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ABSTRACT

We formulate a unifying framework for unsupervised continual learning (UCL), which disentan-
gles learning objectives that are specific to the present and the past data, encompassing stability,
plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches
overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding
space. This results in worse performance due to a lack of within-task data diversity and reduced
effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three
objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks,
including two novel ones proposed in this paper featuring semantically structured task sequences.
Finally, we show some preliminary evidence that continual models can benefit from such more real-
istic learning scenarios. 1

1 INTRODUCTION

Humans and animals learn visual knowledge through continuous streams of experiences, which can be segmented
into a sequence of episodes (Kurby & Zacks, 2008). When this learning process is unlabelled, it is referred to as
unsupervised continual learning (UCL) in machine learning (Madaan et al., 2022; Fini et al., 2022). A popular current
approach to UCL uses self-supervised learning (SSL), which aims at learning invariant representations across pairs of
visually similar images (Chen et al., 2020; Zbontar et al., 2021). Representations learned with SSL are believed to
exhibit less forgetting (McCloskey & Cohen, 1989; French, 1999) than when learned with supervised objectives such
as cross-entropy (Madaan et al., 2022; Davari et al., 2022). This confers SSL an important advantage since minimizing
forgetting is a central objective of continual learning (Parisi et al., 2019).

However, models trained in the UCL setting still do not perform as well as models trained from iid data (offline).
Learning from iid data is ideal but unrealistic when the underlying data distribution changes over time. In contrast,
in UCL, models only have access to data from the present distribution and limited access to the past. Despite recent
effort in advancing UCL (Madaan et al., 2022; Fini et al., 2022; Gomez-Villa et al., 2024), limited progress has been
made in closing this performance gap.

In this study, we take a step back to examine what features current UCL methods learn and why such challenges persist.
Our investigation yields a unifying framework that disentangles the learning objectives specific to the present and past
data. In particular, our framework jointly optimizes: 1) plasticity for learning within the present episode, 2) consoli-
dation for integrating the present and the past representations, and 3) stability for maintaining the past representations.

Our framework reveals that existing UCL methods either are not very effective at optimizing for plasticity or lack an
explicit formulation of cross-task2 consolidation. To improve plasticity, we find that it is crucial to project features
to an embedding space exclusively for optimizing the current-task objective since optimizing other objectives on the
same space can impair the model’s ability to adapt to the new data distribution. Meanwhile, the lack of an explicit
cross-task consolidation objective reduces the data diversity within a batch and causes the present-task representations
to overlap with the past ones.

We address these two limitations by explicitly optimizing all three objectives in our framework with two parallel
projector branches. Our innovations are inspired by recent progress in the SSL literature on contrastive loss decom-
position (Wang & Isola, 2020) and leveraging multiple embedding spaces (Xiao et al., 2021). We name our method
Osiris (Optimizing stability, plasticity, and cross-task consolidation via isolated spaces). Osiris achieves state-
of-the-art performance on a suite of UCL benchmarks, including the standard Split-CIFAR-100 (Rebuffi et al., 2017)

† Work done partially at Columbia University. Correspondence to: <yipeng.zhang@mila.quebec>.
1Code is available at https://github.com/SkrighYZ/Osiris.
2We use task and episode interchangeably.
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where tasks consist of randomly-drawn object classes. Additionally, we find that BatchNorm (Ioffe & Szegedy, 2015)
is not suitable for UCL since it presupposes a stationary distribution, and advise future studies to use GroupNorm (Wu
& He, 2018) instead.

Besides existing benchmarks, we consider the impact of structure in the sequence of episodes typically encountered
in our everyday experiences. We build temporally structured task sequences of CIFAR-100 and Tiny-ImageNet im-
ages (Le & Yang, 2015; Deng et al., 2009) that resemble the structure of visual signals that humans and animals
receive when navigating real-world environments. Interestingly, on the Structured Tiny-ImageNet benchmark, our
method outperforms the offline iid model, showing some preliminary evidence that UCL algorithms can benefit from
real-world task structures.

In summary, our main contributions are:

• We propose a unifying framework for UCL consisting of three objectives that integrate the present and the
past tasks, and show that existing methods optimize a subset of these objectives but not all of them.

• For emulating more realistic learning environments, we propose two UCL benchmarks, Structured CIFAR-
100 and Structured Tiny-ImageNet, that feature semantic structure on classes within or across tasks. We also
propose two new metrics to measure plasticity and consolidation in UCL.

• We propose Osiris, a UCL method that directly optimizes all three objectives in our framework and show
that it achieves state-of-the-art performance on all benchmarks, matching offline iid learning on the 5-task
Split-CIFAR-100, and even outperforms it on the Structured Tiny-ImageNet benchmark.

2 PRELIMINARIES

2.1 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) objectives are remarkably effective in learning good representations from unlabeled
image data (Chen et al., 2020; Zbontar et al., 2021; He et al., 2020; Caron et al., 2020; 2021). Their idea is to enforce the
model to be invariant to low-level cropping and distortions of the image, which encourages it to encode semantically
meaningful features. We focus our analysis on the representative contrastive learning method SimCLR (Chen et al.,
2020) because it has well-studied geometric properties on the feature space, which can help analyses (Wang & Isola,
2020), and it exhibits strong performance in our experiments.

Formally, let A be a stochastic function that applies augmentations (random cropping, color jittering, etc.) to xi ∼ D.
For brevity, we fix the anchor xi when describing the loss and denote the two augmented views of the anchor with
xi,x

′
i = A(xi), and augmented views of other images with xj (j ̸= i). Let fΘ : X → RdE denote our hypothesis

family parameterized by Θ, where dE is the output feature dimension of our model and X ⊇ D. Let gΦ : RdE → RdP

be a non-linear function that projects fΘ(·) to some subspace of RdP . Then, the contrastive loss is defined as

LSSL(D; fΘ, gΦ) = E
xi∼D, {xj}j

iid∼D

[
− log

exp(z⊤
i z′

i)/τ

exp(z⊤
i z′

i)/τ +
∑

j ̸=i exp(z
⊤
i zj)/τ

]
, (1)

where zi = gΦ(fΘ(xi))/∥gΦ(fΘ(xi))∥2 ∈ RdP−1 and similarly for z′
i and zj . τ is a temperature hyperparameter

which we omit for brevity in our analysis. Intuitively, the gradient of this loss with respect to zi is a weighted (with
weights in [0, 1]) sum of −z′

i and every zj (j ̸= i). The optimal model minimizes the distance between representations
of positive pairs and maximizes the pairwise distance of different inputs. In the remainder of this paper, we use
LSSL(D; fΘ, gΦ) to denote the contrastive loss in Eq. 1 within set D on the normalized output space of gΦ ◦ fΘ.

Generalized contrastive loss. We can extend Eq. 1 to a more general form, LSSL(S+,S−; f1, f2), to denote the
asymmetric contrastive loss where we use views of the same example in set S+ as positive pairs and views of examples
in set S− as negatives. The positive pair is encoded by f1 and the negatives are encoded by f2. Formally,

LSSL(S+,S−; f1, f2) = Exi∼S+, {xj}j∼S−

[
− log

exp (S(f1(xi), f1(x
′
i))

exp (S(f1(xi), f1(x′
i))) +

∑
j exp (S(f1(xi), f2(xj)))

]
, (2)

where S(·, ·) denotes the cosine similarity function.

2.2 UNSUPERVISED CONTINUAL LEARNING

UCL studies the problem of representation learning on a set of unlabeled data distributions, {D1, . . . ,DT }, which the
learner sequentially observes. Within each task Dt, the learner is presented a batch of randomly selected examples
X = {xi}Bi=1 at each step, where xi

iid∼ Dt and B is the batch size. Suppose x is an image that belongs to some
semantic concept class; then, the learner does not know either the class label or the task label t and only observes the
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image itself. The goal is to learn a good Θ such that fΘ(x) encodes useful information about x ∼ X that can be
directly used in subsequent tasks, where

⋃T
t=1 Dt ⊆ X . A similar learning setup, with no knowledge of task labels

but with class labels, is typically referred to as task-agnostic task-incremental learning in the supervised continual
learning (SCL) literature.

To use SSL objectives as our learning signal in UCL, the expectation in Eq. 1 can be estimated by averaging the loss
over all examples in a batch X . For each xi, we use xi as the anchor and X \ {xi} as negatives. Two common
baselines are considered in UCL:
• Sequential Finetuning (FT): At task t, we only sample the batch X from Dt.
• Offline Training (Offline): X is sampled iid from D =

⋃T
t=1 Dt throughout training.

In SCL, FT serves as the performance lower bound of models trained sequentially on D1...T , whereas Offline is
expected to be a soft3 upper bound because it has access to the full dataset at any training step.

3 DISSECTING THE LEARNING OBJECTIVE OF UCL

3.1 THREE DESIRABLE PROPERTIES

Features that facilitate plasticity or stability are commonly studied in UCL. In this section, we highlight another
category of features, which we call cross-task consolidation features. We argue that UCL models need to consider
plasticity, stability, and consolidation, in order to achieve good performance.

Plasticity and stability. Plasticity refers to the model’s ability to optimize the learning objective on the present task
Dt. Intuitively, FT usually learns the present task well because it does not consider data in other tasks. On the
other hand, stability refers to the model’s ability to maintain performance on past tasks. This is commonly achieved
either by regularizing the model—with some previous checkpoints—in their parameter space (Kirkpatrick et al., 2017;
Schwarz et al., 2018; Chaudhry et al., 2018) or their output space (Buzzega et al., 2020; Fini et al., 2022), or by
jointly optimizing the learning objective on some data sampled from D1...t−1 so that the model still performs well in
expectation on previous tasks (Lin, 1992; Robins, 1995; Madaan et al., 2022). In practice, the distribution D1...t−1

is usually estimated online with a memory buffer. The stability-plasticity dilemma (Ditzler et al., 2015) refers to
the conundrum where model parameters need to be stable to retain learned knowledge but also need to be plastic to
improve the representations continually. Tackling this challenge has been the main focus of prior work.

Cross-task consolidation. Consolidation refers to the ability to distinguish data from different tasks. For example, if
one task contains images of cats and dogs and another contains images of tigers and wolves, then learning to contrast
dogs and wolves may yield fine-grained features that help reduce cross-task errors. Consolidation has been explored
in SCL by leveraging class labels (Hou et al., 2019; Abati et al., 2020; Masana et al., 2021; Kim et al., 2022) or
frozen representations (Aljundi et al., 2017; Wang et al., 2023), but it has been overlooked in UCL. Since we want to
continually improve a unified representation for all seen data without labels, existing methods are not applicable.

3.2 OSIRIS: INTEGRATING OBJECTIVES OF PRESENT AND PAST

Now we present Osiris, a method that explicitly optimizes plasticity, stability, and cross-task consolidation. All
Osiris’s losses share the same encoder fΘ but may use different nonlinear MLP projectors denoted by gΦ, hΨ :
RdE → RdP . We illustrate the method in Fig. 1.

To estimate D1...t−1 online, Osiris uses a memory buffer M to store data examples observed by the model so
far. In this study, we assume the sampling strategy for data storing and retrieval are both uniform, with the former
being achieved through online reservoir sampling (Vitter, 1985). Various works have studied non-uniform storing and
retrieval (Aljundi et al., 2019a;b;c; Yoon et al., 2021; Gu et al., 2022), but they are orthogonal to this study. Throughout
our analysis, we use X to denote a batch of data sampled iid from Dt and Y to denote a batch sampled iid from M.

3.2.1 PLASTICITY LOSS

The loss of the current task in the form of Eq. 1 is Lcurrent = LSSL (X; fΘ, gΦ). It has been shown by Wang & Isola
(2020) that, asymptotically, the perfect minimizer of Lcurrent projects all x ∈ Dt uniformly to the representation space,
a unit hypersphere. We hypothesize that additional losses may prevent the model from learning this solution on Dt

effectively, because the uniform distribution for Dt is unlikely the optima for other losses.

Fortunately, prior SSL work offer insights on tackling the stability-plasticity dilemma: the backbone encoder
fΘ encodes the necessary information that helps minimize SSL losses on multiple nonlinearly projected output

3See Sec. 4.4 for cases when UCL methods outperform Offline.
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Figure 1: Left: illustration of our method. Dashed arrows denote optional computations because the stability loss Lpast
can be achieved through distillation or replay. Right: conceptual loss space. A separate projector helps optimization.

spaces (Xiao et al., 2021; Chen et al., 2020). To learn the new task effectively, we do not apply other losses on the
output space of gΦ ◦ fΘ; additional losses are calculated on representations projected from the outputs of fΘ with
some other projector hΨ. This allows the model to freely distribute gΦ(fΘ(x)) in order to optimize Lcurrent, while
potentially maintaining some other distributions of fΘ(x) or hΨ(fΘ(x)). The benefit of this approach is that fΘ still
encodes the features that help optimize Lcurrent on the output space of gΦ ◦ fΘ.

3.2.2 STABILITY LOSS

Like most prior studies in continual learning, we introduce a loss to promote stability and reduce forgetting. We study
two approaches, which we discuss next. They both use the projector hΨ.

Osiris-D(istillation). The first approach uses distillation and requires storing a frozen checkpoint of the encoder,
fΘ∗

t−1
, at the end of task t− 1. It asks the current model to predict a data example from a batch of examples encoded

by the checkpoint, therefore encouraging it to retain previously learned features. The loss can be written with the
notation of Eq. 2 as Lpast-D = LSSL(X,X;hΨ ◦ fΘ∗

t−1
, hΨ ◦ fΘ). The idea of Lpast-D is similar to CaSSLe (Fini et al.,

2022), but we distill our model with fΘ∗
t−1

(x) and not gΦ∗
t−1

(fΘ∗
t−1

(x)), where gΦ∗
t−1

is the projector checkpoint. Our
approach has several advantages: (a) it has been shown that the encoder output produces better representations than
the projector output (Chen et al., 2020); (b) the gradient of our stability loss does not pass through gΦ, which allows
more freedom in exploring the current-task features; and (c) we do not need to store gΦ∗

t−1
.

Osiris-R(eplay). The second approach does not require storing parameters. It applies the contrastive loss on Y alone.
The loss can be written as Lpast-R = LSSL (Y ; fΘ, hΨ). This loss prevents forgetting by optimizing the learning
objective on D1...t−1, in expectation. It is similar to ER, to be discussed in Sec. 3.3, but uses a different projector.

Remark. Although using both Lpast-R and Lpast-D may yield better performance, we emphasize that this is not our
goal. Because both losses aim to reduce forgetting, we use them to demonstrate the flexibility of our framework and
investigate the pros and cons of replay versus distillation in our experiments. We expect that it is possible to use any
replay or output regularization method explored in SCL (e.g., DER in Buzzega et al. 2020) as our stability loss, as long
as they operate on the output space of hΨ.

3.2.3 CROSS-TASK CONSOLIDATION LOSS

Recall from Sec. 3.2.1 that the perfect minimizer of Lcurrent projects all data from Dt uniformly to the representation
space. Similarly, representations of D1...t−1 encoded by the perfect minimizer of Lpast are also distributed uniformly.
This means that the model may still suffer from representation overlaps between D1...t−1 and Dt (or between a pair
of tasks from D1...t−1) even if they successfully optimize Lcurrent and Lpast. Although using separate projectors for
Lcurrent and Lpast may help, we propose to introduce a loss that explicitly reduces the overlap.

Consider features that are useful in discriminating instances of Dt from those of D1...t−1; they may not be readily
encoded in fΘ∗

t−1
, as the model has not seen any data from Dt at the end of task t− 1. Thus, distillation does not help

much in this case. Instead, we propose to leverage the memory M. We find using an additional projector for this loss is
unnecessary, so we reuse the output space of hΨ. Our consolidation loss is Lcross =

1
2LSSL (X,Y ;hΨ ◦ fΘ, hΨ ◦ fΘ)

+ 1
2LSSL (Y,X;hΨ ◦ fΘ, hΨ ◦ fΘ). This loss contrasts the current task and the memory, which promotes learning

features that help discriminate the instances from the current task and past tasks. In practice, we find the symmetric
loss works better than having only the first term.
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Remark. One might expect that Lcross encourages representations of M to collapse to a single point to minimize their
similarity with Dt. We believe that this is unlikely because we find empirically that the stability loss helps the model to
learn well-behaved representations of M. For example, optimizing Lpast-D, which is calculated on Dt, yields features
that are transferable to M. Similarly, Lpast-R directly prevents collapses with the contrastive loss on M. In addition,
since data storing is performed online, M may contain examples from Dt while learning it, causing Lcross to contrast
examples within Dt (similar to Lcurrent). Nevertheless, because most SSL objectives encourage discrimination on the
instance level rather than the class level, the model would still learn useful features with Lcross in this scenario.

3.2.4 OVERALL LOSS

The overall loss of our model is L = Lcurrent +
1
2 (Lcross + Lpast). Similarly to Fini et al. (2022), we do not perform

hyperparameter tuning on the loss weights (although it might yield better results) and fix the additional weights to sum
to one to demonstrate the potential of this framework. In Fig. 1, we illustrate the conceptual optimization landscape.
As discussed above, no solution minimizes all three losses individually in the same space. With isolated features
spaces, our method reduces the extent to which Lcross or Lpast directly constrain the model from learning the current
task, which promotes plasticity. Note that fΘ still needs to maintain a unified representation that preserves information
useful for minimizing all three losses.

3.3 EXPRESSING UCL METHODS WITH A UNIFYING FRAMEWORK

Now, we extend Osiris to a more general framework in the form of a unified optimization objective, based on the
encoder-projector architecture of SSL models. At task t, it can be expressed as the following:

L∗
X

iid∼Dt,Y
iid∼M

(
X,Y ; fΘ, fΘ∗

t−1
, gΦ, gΦ∗

t−1
, hΨ,mΩ

)
= Lcurrent(X; fΘ, gΦ) + λ1Lcross(X,Y ; fΘ, hΨ) + λ2Lpast(X,Y ; fΘ, fΘ∗

t−1
, gΦ, gΦ∗

t−1
,mΩ) . (3)

Table 1: Comparison of UCL methods
based on the feature components opti-
mized. ‡Based on latent mixup.

Method Isolated Space Lcross Lpastfor Lcurrent

FT ✓

ER ✓
DER ✓
LUMP‡ ✓ ✓

EWC ✓
CaSSLe ✓ ✓
POCON ✓ ✓

ER+ (Ours) ✓ ✓
ER++ (Ours) ✓ ✓
Osiris (Ours) ✓ ✓ ✓

Here, we reuse the notations from Sec. 3.2 and introduce some new ones:
mΩ is an additional nonlinear MLP projector parameterized by Ω, and λ1,λ2

denote the loss weights (λ1, λ2 ≥ 0). The three terms in Eq. 3 learn features
that promote plasticity, cross-task consolidation, and stability, respectively.
Note that it is not necessary for the objective to use all the arguments included
in the parentheses or different parameterizations for gΦ, hΨ,mΩ; we only
use Eq. 3 as the general form. Nevertheless, an ideal model explores good
features from the first two terms and uses the third term to ensure that it does
not forget them over time.

Interestingly, most existing UCL methods implicitly optimize the terms in
Eq. 3, which we formally show next. Our analysis is similar to Wang et al.
(2024), but is distinct in that we decompose the objective from a represen-
tation learning perspective rather than a methodology perspective. We fix
the first term (shared across methods) and let fΘ and gΦ be the current-task
encoder and projector as described in Sec. 2.1. One exception is dynamic
model architectures where new parameters are added during learning (Yoon
et al., 2018; Rusu et al., 2016); we do not discuss architecture-based methods as it would be equivalent to progressively
adding arguments to the first term. We illustrate the focus of different UCL methods in Table 1.

Elastic Weight Consolidation (EWC) is a classic baseline in continual learning (Kirkpatrick et al., 2017; Schwarz
et al., 2018; Chaudhry et al., 2018). It uses (Θ − Θ∗

t−1)
⊤Ft(Θ − Θ∗

t−1) as Lpast, where Ft is the diagonal Fisher
information matrix at task t that can be estimated with Ft−1,Dt−1, fΘ∗

t−1
, and gΦ∗

t−1
at the end of task t−1. EWC does

not use a memory buffer, but needs to store Ft and Θ∗
t−1. It sets λ1 = 0 and does not consider cross-task consolidation.

CaSSLe (Fini et al., 2022) is the previous state of the art in UCL. It uses the SSL objective as Lpast to regularize
the model on a separate output space projected from the main model output. The CaSSLe loss can be expressed
with Eq. 2 as LSSL(X,X;mΩ ◦ fΘ, gΦ∗

t−1
◦ fΘ∗

t−1
). CaSSLe uses another projector h on the output of g to form m,

i.e., mΩ = hΨ ◦ gΦ. This objective encourages the main model gΦ ◦ fΘ to encode information that can be used to
predict representations of a previous checkpoint, gΦ∗

t−1
◦fΘ∗

t−1
, thereby restricting the main model from losing features

learned. The current task loss still acts on gΦ ◦ fΘ. Since the gradient from the regularization is back-propagated to
g, CaSSLe may still limit the model’s ability to learn the new task effectively. It also does not consider cross-task
consolidation (λ1 = 0) and does not use a memory buffer.
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Experience Replay (ER) (Lin, 1992; Robins, 1995) is a classic replay-based baseline. It uses LSSL(Y ; fΘ, gΦ) as
Lpast and sets λ1 = 0. Unlike regularization-based methods, this loss may implicitly allow the model to discover new
features that improve cross-task consolidation since Y includes examples from D1...t−1.

ER+ and ER++ are our attempts to improve ER which, in addition to ER, exploit the abundance of the current task
data for Lcross. One such way is to add the memory examples into negatives augmenting the current task negatives,
i.e., LER+ = LSSL(X,X ∪ Y ; gΦ ◦ fΘ, gΦ ◦ fΘ); it is similar to the asymmetric loss used by Cha et al. (2021) in
SCL and we refer to it as ER+. This loss indeed pushes representations of the current task and the memory apart, but
it does not yield gradient that enforces alignment (Wang & Isola, 2020) of different views generated from memory
examples. An alternative way is to use a full SSL loss on the union of the current batch and memory, i.e., LER++ =
LSSL(X ∪ Y ; fΘ, gΦ). We refer to this method as ER++.

Dark Experience Replay (DER) (Buzzega et al., 2020; Madaan et al., 2022) is an improved version of ER,
where λ1 remains 0 and Lpast becomes a regularizer on the output space which is empirically estimated with
1

|Y |
∑

y∈Y ∥gΦ(fΘ(y)) − z∥22, where z is the representation g(f(y)) encoded by the model when y is stored into
M. It does not consider cross-task consolidation because this objective does not encourage learning new features.

LUMP (Madaan et al., 2022) is the state-of-the-art replay-based UCL method. It applies mixup (Zhang et al., 2018), a
linear interpolation between x ∈ X and y ∈ Y , to generate inputs: x̃i = νxi +(1− ν)yi where ν ∼ Beta(α, α) with
α being a hyperparameter. The batch X̃ = {x̃i}Bi=1 is passed to the only loss term of the model, LSSL(X̃; fΘ, gΦ).
This loss form does not fall directly into our framework because it is hard to disentangle the effect of the loss on points
in between data examples. We give the proposition below and prove it in Appendix A.

Proposition 1. Let ν ∼ Beta(α, α) and let LLUMP(X,Y ; ν, fΘ, gΦ) := LSSL(X̃; fΘ, gΦ) be as described above.
Define zi := g(f(xi))/∥g(f(xi))∥2, ui := g(f(yi))/∥g(f(yi))∥2, and z̃i := g(f(x̃i))/∥g(f(x̃i))∥2 for all i ∈
{1, . . . |X|}. Suppose that the representations are linear in between xi and yi, i.e., z̃i = νzi + (1− ν)ui. Then

Eν

[
∂LLUMP

∂zi

]
= −aiz

′
i +

∑
j ̸=i

ajzj︸ ︷︷ ︸
Lcurrent

+
∑
j ̸=i

bjuj︸ ︷︷ ︸
Lcross

−biu
′
i , (4)

and Eν

[
∂LLUMP

∂ui

]
= −ciu

′
i +

∑
j ̸=i

cjuj︸ ︷︷ ︸
Lpast

+
∑
j ̸=i

djzj︸ ︷︷ ︸
Lcross

−diz
′
i , (5)

where a(·), b(·), c(·), d(·) ≥ 0 are scalar functions of α and the softmax probabilities of predictions.

The first equation represents the gradient of the loss w.r.t. representations of examples in the current-task batch X .
In contrast, the second equation represents the gradient w.r.t. examples in the batch Y sampled from the memory.
Recall from Sec. 2.1 that (·)′ denotes the representation of another view of the same input. The linearity assumption
we make above may not seem to be true in general, but note that mixup aims to help the model behave linearly in
between examples to generalize better (Zhang et al., 2018). Nevertheless, we aim to estimate LUMP’s effect with this
decomposition. Besides the last term in each equation, which indicates the gradient that pulls zi and ui (the pair of
examples being mixed) closer, Prop. 1 says that the gradient of LUMP with contrastive learning can be decomposed
and affects all components of Eq. 3: (a) current task learning, (b) cross-task discrimination, and (c) past task learning.
However, since all the losses act on the same output space and the coefficients are correlated, this does not allow
flexible control of the learning emphasis.

4 EXPERIMENTS

4.1 EXPERIMENTAL PROTOCOL

Baselines. We compare our method with FT and Offline defined in Sec. 2.2. We also compare with classic CL
methods: online EWC (Schwarz et al., 2018), ER (Lin, 1992; Robins, 1995), DER (Buzzega et al., 2020) which we
described in Sec. 3.3. We find that we can improve DER’s performance by normalizing the features before performing
L2 regularization, so we report the performance of improved DER only. We also report performance of ER+ and ER++
described in Sec. 3.3. In addition, we compare with methods designed specifically for UCL, CaSSLe (Fini et al.,
2022) and LUMP (Madaan et al., 2022). Concurrent work, POCON (Gomez-Villa et al., 2024), also aims to maximize
plasticity for UCL. We use the online version of POCON for a fair comparison so that all methods observe the data the
same number of times. Finally, we do not compare with C2ASR (Cheng et al., 2023) because it requires sorting the
entire task stream and is an additional plug-in for UCL methods.
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Benchmarks.
• Standard Split-CIFAR-100. Following Madaan et al. (2022); Fini et al. (2022), we evaluate the models on the

5-task and 20-task sequences of CIFAR-100 (Krizhevsky, 2009). It contains 50,000 32×32 images from 100 classes
that are randomly grouped into a disjoint set of tasks.

• Structured CIFAR-100. In real-world environments, consecutive visual scenes are often similar and correlated in
time. For example, seeing a great white shark immediately followed by office chairs is rather unlikely. We construct
a temporally structured CIFAR-100 sequence by grouping the classes with the same superclass label (provided by
the dataset) into a task and randomly shuffle the task order, which results in 10 tasks. Examples of superclasses
include vehicles, flowers, and aquatic mammals.

• Structured Tiny-ImageNet. Real-world environments also boast an abundance of hierarchies. We may visit differ-
ent city blocks in an urban area and then tour multiple spots in a wild park. To create a task sequence that captures
hierarchical environment structure, we use Tiny-ImageNet-200 (Le & Yang, 2015; Deng et al., 2009), which includes
100,000 images of size 64×64 categorized into 200 classes whose location spans different environments. We first
use a pre-trained scene classifier trained on Places365 (Zhou et al., 2017) to classify all images into indoor, city,
and wild environments. We then use a majority vote to decide the environment label for each class. Finally, we ar-
range the classes in the order of indoor→ city→ wild and group them into ten tasks in order. This leads to four
tasks indoors, three tasks in the city, and three tasks in the wild. Compared with Structured CIFAR-100, which only
enforces correlation within each task, this benchmark additionally imposes correlation between consecutive tasks.

Implementation details. We use a single-head ResNet-18 (He et al., 2016) as our backbone encoder. We use a two-
layer MLP with a hidden dimension of 2048 and an output dimension of 128 as the projector. We use the ReLU
function as activation after the hidden layer but not the output layer following Chen et al. (2020). For POCON, we fol-
low the authors’ implementation and use four-layer projectors for distillation. We set the memory size |M| = 500 for
all experiments. We train the models with a batch size of 256 for 200 epochs for UCL training, following Madaan et al.
(2022). All methods use the same loss as FT during the first task. We provide additional training, data augmentation
hyperparameters, and other details in Appendix C. Additionally, we use GroupNorm (Wu & He, 2018) in our model
instead of BatchNorm (Ioffe & Szegedy, 2015). We find the latter to be detrimental to UCL performance, similar to
prior findings in SCL (Pham et al., 2021). We provide analysis on normalization layers in Appendix B.

4.2 METRICS FOR EVALUATING UCL METHODS

After unsupervised training, we keep the encoders and discard the projectors following standard practice (Chen et al.,
2020). Following Madaan et al. (2022), let At,i be the weighted KNN (Wu et al., 2018) test accuracy of the encoder
fΘ∗

t
on task i after it finishes training on task t. Note that the KNN classifier does not know the task labels (see

Appendix D for results when task labels are given); therefore, it is important for fΘ∗
t

to obtain a good representation
geometry over the entire dataset. We report the mean and standard deviation of results obtained from three random
seeds in all of our tables and plots. We use five metrics in this study; accuracy, forgetting, and forward transfer are
commonly used and we propose knowledge gain and cross-task consolidation score to measure the model’s ability to
optimize Lcurrent and Lcross in Eq. 3:

• Overall Accuracy (A) is the accuracy of the final model on all classes in the dataset: A = 1
T

∑T
i=1 AT,i.

• Forgetting (F) measures the difference between the model’s best accuracy on task i at any point during training and
its accuracy on task i after training: F = 1

T−1

∑T−1
i=1 maxt∈{1,...T}(At,i − AT,i). Forgetting measures the model’s

ability to optimize Lpast in Eq. 3.
• Knowldege Gain (K). It has been shown that representations learned in UCL are less prone to forgetting than their

SCL counterparts (Davari et al., 2022; Madaan et al., 2022). On the other hand, models learned continually lose
plasticity (Abbas et al., 2023). Thus, we use knowledge gain to quantify the accuracy increase on task i before and
after the model is trained on it. It is defined as K = 1

T−1

∑T
i=2(Ai,i − Ai−1,i). Knowledge gain is similar to the

SCL metrics proposed by Chaudhry et al. (2018); Koh et al. (2023), but it is simple to calculate and is more suitable
for UCL because UCL models generally have a reasonable performance on a task before even learning on it thanks
to the generalization capability of SSL. Knowledge gain quantifies the model’s ability to optimize Lcurrent.

• Cross-Task Consolidation (C) is defined as the test accuracy of a task-level KNN classifier on the frozen represen-
tations of the final model. As discussed in the previous sections, new knowledge acquisition is quantified by both
knowledge gain and the ability to learn features that discriminate data across tasks, i.e., to optimize Lcross.

• Forward Transfer (T) quantifies the generalization ability of UCL models by measuring how much of the learned
representation can be helpful to an unseen task. It is defined as T = 1

T−1

∑T
i=2(Ai−1,i − Ri) where Ri is the

accuracy of a randomly initialized model on task i. It is used by Madaan et al. (2022); Fini et al. (2022).
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Table 2: Results on standard Split-CIFAR-100 with five or 20 tasks. The best model in each column is made bold and
the second-best model is underlined. †Improved DER. §Online version of POCON.

5-TASK SPLIT-CIFAR-100 20-TASK SPLIT-CIFAR-100
A (↑) F (↓) K (↑) C (↑) T (↑) A (↑) F (↓) K (↑) C (↑) T (↑)

FT 50.7 (± 0.4) 2.9 (± 0.0) 9.0 (± 0.1) 59.1 (± 0.2) 30.7 (± 0.3) 45.6 (± 0.3) 2.9 (± 0.4) 2.5 (± 0.1) 47.2 (± 0.1) 28.9 (± 0.2)

ER (Lin, 1992; Robins, 1995) 51.5 (± 0.4) 2.7 (± 0.4) 8.4 (± 0.3) 59.7 (± 0.4) 31.8 (± 0.2) 47.1 (± 0.7) 3.4 (± 0.6) 3.5 (± 0.4) 48.2 (± 0.5) 30.1 (± 0.2)

DER† (Buzzega et al., 2020) 51.0 (± 0.6) 3.0 (± 0.7) 9.6 (± 0.3) 59.0 (± 0.4) 30.5 (± 0.1) 45.7 (± 0.1) 2.6 (± 0.2) 2.6 (± 0.4) 47.2 (± 0.2) 28.7 (± 0.2)

LUMP (Madaan et al., 2022) 50.2 (± 0.6) 1.4 (± 1.1) 7.3 (± 0.3) 58.4 (± 0.4) 30.2 (± 0.1) 47.7 (± 1.1) 2.6 (± 0.9) 3.1 (± 0.3) 49.1 (± 1.0) 29.7 (± 0.0)

ER+ 51.8 (± 0.6) 3.4 (± 0.5) 10.2 (± 0.3) 60.1 (± 0.3) 31.1 (± 0.4) 46.7 (± 0.3) 3.1 (± 0.3) 4.4 (± 0.0) 48.0 (± 0.1) 28.8 (± 0.1)

ER++ 51.8 (± 0.3) 2.9 (± 0.6) 9.1 (± 0.4) 59.8 (± 0.3) 31.6 (± 0.4) 47.7 (± 0.3) 3.7 (± 0.3) 5.0 (± 0.4) 49.0 (± 0.5) 30.0 (± 0.1)

Osiris-R (Ours) 52.3 (± 0.5) 2.5 (± 0.7) 8.5 (± 0.1) 60.1 (± 0.1) 32.1 (± 0.2) 49.3 (± 0.3) 3.1 (± 0.2) 4.7 (± 0.2) 50.5 (± 0.5) 31.5 (± 0.3)

EWC (Schwarz et al., 2018) 43.8 (± 0.6) 2.3 (± 0.8) 5.0 (± 0.4) 53.9 (± 0.7) 26.4 (± 0.3) 37.6 (± 0.2) 1.7 (± 0.1) 2.0 (± 0.3) 39.4 (± 0.3) 21.4 (± 0.4)

CaSSLe (Fini et al., 2022) 51.2 (± 0.3) 0.7 (± 0.1) 7.2 (± 0.5) 59.5 (± 0.3) 30.4 (± 0.5) 48.0 (± 0.1) 1.9 (± 0.1) -0.4 (± 0.2) 49.2 (± 0.2) 30.2 (± 0.2)

POCON§ (Gomez-Villa et al., 2024) 50.6 (± 0.7) 3.2 (± 1.0) 9.3 (± 0.4) 59.3 (± 0.3) 30.6 (± 0.3) 45.2 (± 0.4) 3.0 (± 0.6) 2.7 (± 0.4) 46.8 (± 0.3) 28.8 (± 0.1)

Osiris-D (Ours) 53.0 (± 0.2) 1.6 (± 0.5) 8.4 (± 0.3) 60.5 (± 0.1) 31.7 (± 0.3) 50.1 (± 0.2) 2.3 (± 0.2) 4.2 (± 0.3) 51.3 (± 0.1) 31.3 (± 0.4)

Offline 52.5 (± 0.4) - - 60.0 (± 0.4) - 52.5 (± 0.4) - - 53.9 (± 0.2) -

Table 3: Results on 10-task sequences on structured CIFAR-100 and Tiny-ImageNet. The two best models are marked.
Osiris-D performs the best, surpassing Offline on Structured Tiny-ImageNet.

STRUCTURED CIFAR-100 STRUCTURED TINY-IMAGENET
A (↑) F (↓) K (↑) C (↑) T (↑) A (↑) F (↓) K (↑) C (↑) T (↑)

FT 45.0 (± 0.6) 5.5 (± 0.4) 7.8 (± 0.3) 59.2 (± 0.5) 28.7 (± 0.2) 34.2 (± 0.2) 4.7 (± 0.1) 5.7 (± 0.4) 43.5 (± 0.2) 26.0 (± 0.2)

LUMP (Madaan et al., 2022) 48.5 (± 0.7) 3.6 (± 0.6) 7.9 (± 0.5) 62.7 (± 0.7) 29.7 (± 0.6) 36.0 (± 1.0) 2.9 (± 1.1) 5.3 (± 0.2) 45.2 (± 0.8) 26.2 (± 0.4)

CaSSLe (Fini et al., 2022) 47.4 (± 0.3) 1.9 (± 0.3) 4.1 (± 0.2) 61.6 (± 0.1) 30.0 (± 0.3) 35.4 (± 0.3) 2.1 (± 0.2) 3.2 (± 0.1) 43.9 (± 0.3) 26.7 (± 0.1)

POCON§ (Gomez-Villa et al., 2024) 45.8 (± 0.5) 5.2 (± 0.3) 7.7 (± 0.3) 59.6 (± 0.8) 29.3 (± 0.4) 34.4 (± 0.6) 3.8 (± 0.8) 5.5 (± 0.2) 43.6 (± 0.5) 25.7 (± 0.1)

Osiris-R (Ours) 49.0 (± 0.4) 5.0 (± 0.6) 8.3 (± 0.6) 62.8 (± 0.2) 31.7 (± 0.1) 36.3 (± 0.1) 3.6 (± 0.2) 5.5 (± 0.1) 45.1 (± 0.1) 27.5 (± 0.3)

Osiris-D (Ours) 49.8 (± 0.1) 4.4 (± 0.3) 8.4 (± 0.2) 64.2 (± 0.1) 31.5 (± 0.2) 37.5 (± 0.4) 2.9 (± 0.2) 5.0 (± 0.4) 46.5 (± 0.2) 28.1 (± 0.1)

Offline 52.5 (± 0.4) - - 67.9 (± 0.1) - 36.8 (± 0.1) - - 46.4 (± 0.2) -

4.3 RESULTS ON THE STANDARD BENCHMARKS

In Table 2, we report the results of all models on Split-CIFAR-100. Our first observation is that FT is already a
very strong baseline with a final accuracy only 2% below the Offline model’s accuracy on the 5-task sequence.
Moreover, Osiris-D closes this gap with Offline on both overall accuracy (p = 0.185 by an unpaired t-test) and
consolidation score. We hypothesize that this is in part attributed to that Osiris-D leverages the data ordering by
contrasting the current task and the memory, although task labels are not explicitly given. On the other hand, Offline
does not have any task label information. Among all methods, Osiris consistently achieves the highest overall
accuracy, consolidation score, and forward transfer, regardless of the number of tasks. Comparing Osiris-R and
Osiris-D, we find that there’s still a trade-off between plasticity and stability. Osiris-R shows more knowledge
gain at the expense of higher forgetting, and Osiris-D shows lower forgetting but sometimes lower knowledge gain.

CaSSLe shows low forgetting on both task sequences but lower knowledge gains than all the other methods except
EWC, indicating that parallel projectors (in Osiris) might be a better choice than sequential ones (in CaSSLe) at
improving plasticity. POCON is designed to maximize plasticity by distilling the model with a single-task expert,
achieving the highest knowledge gain among the distillation-based methods (except Osiris-D on the 20 tasks).
LUMP improves over FT on the 20-task but not on the 5-task sequence, and we hypothesize that it is because memory
is more important when individual tasks are less diverse. Interestingly, the knowledge gain of FT is not the upper
bound for UCL methods. This may be because UCL methods implicitly leverage learned representations or memory
to help learn a new task (a form of forward transfer). For example, the methods with the highest knowledge gain on
each benchmark are ER+ and ER++, which both involve contrasting the current task and the memory.

General findings. Similar to Madaan et al. (2022), we find all UCL methods exhibit very low forgetting compared to
previously reported numbers in SCL (Chaudhry et al., 2018). In general, the models with the lowest forgetting applies
distillation. Indeed, a previously hypothesized criticism for replay-based methods is that they are prune to overfitting
to memory (Fini et al., 2022), which we analyze empirically in Sec. 4.5. On the other hand, they show more plasticity
and have higher knowledge gain on the new task.

4.4 RESULTS ON THE STRUCTURED BENCHMARKS

We show the results of recent UCL methods on the structured benchmarks in Table 3. On Structured CIFAR-100, the
methods show higher forgetting than on both random 5-task and 20-task sequences (a caveat for such a comparison
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(a) (b)

Figure 2: (a) Interplay between plasticity (current-task accuracy), cross-task consolidation (task-level KNN accuracy),
and stability (accuracy of the first task throughout training). (b) Relative difference between the contrastive loss on
past-task data and on memory for replay-based methods. All methods except Osiris-D show signs of overfitting.

Table 4: Ablation and within-environment accuracy.

(a) Ablation for Osiris-D on 20-task Split-CIFAR-100.

A (↑) F (↓) K (↑) C (↑) T (↑)
w/o isolated space 47.8 (± 0.3) 2.8 (± 0.3) 2.0 (± 0.4) 49.3 (± 0.2) 30.4 (± 0.3)

w/o Lcross 45.9 (± 0.1) 2.5 (± 0.3) 1.8 (± 0.2) 47.2 (± 0.2) 29.2 (± 0.2)

w/o Lpast 49.2 (± 0.4) 2.6 (± 0.3) 4.8 (± 0.5) 50.4 (± 0.3) 30.5 (± 0.2)

Full 50.1 (± 0.2) 2.3 (± 0.2) 4.2 (± 0.3) 51.3 (± 0.1) 31.3 (± 0.4)

(b) Within-environment accuracy on Structured Tiny-IN.

Method Env. 1 Env. 2 Env. 3

Offline 44.2 (± 0.6) 60.9 (± 0.7) 50.3 (± 0.5)

FT 39.0 (± 0.2) 57.1 (± 0.4) 54.7 (± 0.5)

Osiris-D 43.7 (± 0.6) 60.2 (± 0.7) 55.1 (± 0.5)

is that here we have ten tasks). Nevertheless, CaSSLe and LUMP show relatively low forgetting but fail to address
some of the other components of our framework (Eq. 3). All UCL methods improve over FT, and the two variants of
Osiris outperform others in terms of knowledge gain, consolidation, forward transfer, and overall accuracy. This
indicates that Osiris is robust to correlated task sequences.

On Structured Tiny-ImageNet, FT shows the highest knowledge gain, which means it benefits more from intra-task
similarity. We hypothesize that contrastive learning benefits from high intra-task similarity because it provides hard
negatives. Osiris again outperforms other UCL methods in terms of knowledge gain, consolidation, and forward
transfer. Surprisingly, Osiris-D obtains better accuracy than Offline (p = 0.008 by an unpaired t-test). From a
curriculum-learning perspective, this suggests that the realistic, hierarchical structure constructs a better task sequence
than random construction. We investigate how such a task ordering affects the representation structure in Sec. 4.5.

4.5 ANALYSIS

Balancing stability, plasticity, and consolidation. We now examine how UCL methods balance plasticity, cross-
task consolidation, and stability. We use Osiris-D for our analysis in this section since Osiris-R shows similar
behavior. Similar to the analysis by Gomez-Villa et al. (2024), in Fig. 2, we plot for different UCL methods the current
task accuracy (plasticity), task-level KNN accuracy (cross-task consolidation), and accuracy of the first task (stability)
throughout training on 20-task Split-CIFAR-100. We plot the accuracy for all the other tasks in Appendix G. The
first observation is that Osiris performs relatively well on all three aspects throughout training. LUMP and CaSSLe
have similar accuracy in Table 2. They show the same level of cross-task consolidation in Fig. 2 because they do not
directly enforce it. Among the two, LUMP shows higher plasticity but lower stability near the end of training. Both
methods show better overall accuracy than FT, which may be attributed to their better consolidation scores.

Ablations. In Table 4a, we show the results of our framework after removing each component. When using a shared
projector for all three losses, the model’s knowledge gain drops from 4.2% to 2.0%, which shows that using separate
spaces helps plasticity, as we have hypothesized. When not using Lcross, the model shows the lowest cross-task
consolidation score among all the models being compared here. It also shows low forgetting because the only loss
applied on output space of h ◦ f is now the distillation loss (Lpast). On the other hand, after removing Lpast, the model
exhibits the highest knowledge gain, which means that learning the new task gains benefit from Lcross. Finally, with
all the components, Osiris balances all three aspects of our framework and achieves the best scores on all metrics
except knowledge gain, without requiring manually adjusting the loss weights.

How does a structured task sequence affect representation? In Table 4b, we show the within-environment accuracy
for Offline, FT, and Osiris-D. Both FT and Osiris perform better than Offline on the last environment
but not as well on the first two. Compared to FT, Osiris shows less forgetting and performs better in previously-
observed environments. To examine their representation geometry, we plot the mean cosine similarity matrix between
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Figure 3: Mean cosine similarity between pairs of examples drawn from pairs of classes. Environments are marked.

features of examples from pairs of classes, for these three methods, in Fig. 3. The matrix shows that classes within
the last environment are naturally projected by Offline to nearby positions on the representation hypersphere.
Differently, FT and Osiris can better distinguish between classes in the third environment. Among the two, Osiris
distinguishes between different classes within the first two environments better. Together with within-environment
accuracy, this provides evidence that UCL methods benefit from the ordered task sequence such that they distinguish
examples in the last environment better. At the same time, Offline is less sensitive distinguishing these examples.

Does replay-based methods overfit to memory? Replay-based methods can overfit to memory in SCL (Verwimp
et al., 2021; Buzzega et al., 2021). In UCL, we find replay-based methods except Osiris-D achieve a much lower
loss on memory than on all past-task data (Fig. 2b). We detail our analysis in Appendix E. In summary, our findings
empirically support the hypothesis of Fini et al. (2022) that using replay for Lpast may cause the model to overfit to
the memory, but also show that we still need the memory to improve consolidation, which is crucial for performance.

5 RELATED WORK

Self-supervised learning. A large body of work in SSL belongs to the contrastive learning family (Chen et al., 2020;
He et al., 2020; Misra & Maaten, 2020; Hadsell et al., 2006; Tian et al., 2020; Oord et al., 2018; Wu et al., 2018;
Gutmann & Hyvärinen, 2010), which we focus on in this study. The main idea is to match the representations of two
augmented views of the same image and repel the representations of different images to learn semantically meaningful
representations. Clustering-based methods share high-level intuition but perform contrastive learning on the cluster
level rather than the instance level (Caron et al., 2020; He et al., 2016). Other works have explored relaxing the need
for negative pairs, usually by asymmetric architectures (Grill et al., 2020; Chen & He, 2021) or losses that enforce
variance in representations (Zbontar et al., 2021; Bardes et al., 2022; Ermolov et al., 2021). SSL methods that work
on transformers have also been proposed in recent years (He et al., 2022; Caron et al., 2021).

Continual learning. SCL methods are commonly partitioned into three categories. Regularization-based meth-
ods (Kirkpatrick et al., 2017; Schwarz et al., 2018; Chaudhry et al., 2018; Zenke et al., 2017; Aljundi et al., 2018;
Castro et al., 2018; Douillard et al., 2020; Hou et al., 2019; Wu et al., 2019) regularize model parameters such that
they do not drift too far from previous optima. Replay-based methods (Buzzega et al., 2020; Robins, 1995; Hayes
et al., 2020; Rebuffi et al., 2017; Chaudhry et al., 2019; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019a; Ostapenko
et al., 2019) use a memory buffer storing data from past task and use them for replay. Finally, architecture-based
methods (Ostapenko et al., 2021; Rusu et al., 2016; Serra et al., 2018; Li et al., 2019) dynamically introduce new pa-
rameters for each task to reduce forgetting. Limited progress has been made in UCL. The area is first explored by Rao
et al. (2019); Smith et al. (2021), but their work is limited to small datasets such as handwritten digits and is hard to
scale. Recent work focuses on improving SSL-based UCL (Madaan et al., 2022; Fini et al., 2022; Gomez-Villa et al.,
2024; 2022; Cheng et al., 2023). In contrast, we investigate what features are essential in UCL and offer new insights
and practical guidance around normalization. SSL also helps SCL (Cha et al., 2021; Caccia et al., 2021) by improving
the model’s representations. It is worth mentioning that properties of representations learned with SSL in continual
learning have been empirically studied (Davari et al., 2022; Galashov et al., 2023; Gallardo et al., 2021).

6 CONCLUSION

This work identifies three key components in UCL for integrating representation learning in the present and the past
tasks: plasticity, stability and cross-task consolidation. Existing methods fall under our unifying framework by op-
timizing only a subset of objectives, whereas our proposed method Osiris explicitly optimizes and balances all
three desiderata. Osiris achieves state-of-the-art performance on all UCL benchmarks and shows better accuracy
on our realistic Structured Tiny-ImageNet benchmark than offline iid training. Our work sheds new light on the po-
tential learning mechanisms of continual learning agents in the real world. Future work will extend our framework to
non-contrastive SSL approaches and evaluate more realistic learning environments, such as lifelong video recordings.
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A PROOF OF PROPOSITION 1

Proof. Let ν ∼ Beta(α, α). Define zi := g(f(xi))/∥g(f(xi))∥2, ui := g(f(yi))/∥g(f(yi))∥2, and z̃i :=
g(f(x̃i))/∥g(f(x̃i))∥2 for all i ∈ {0, . . . |X|}. Assume that the representations are also linearly mixed in the repre-
sentation space, i.e., z̃i = νzi + (1− ν)ui.

Let z̃i be the anchor, the representation of its other augmented view z̃i
′ as the positive, and a set of representations of

mixed examples {z̃j}j ̸=i as negatives. Then we can express the LUMP loss as

LLUMP(X,Y ; ν, fΘ, gΦ) = Eν

[
− log

exp(z̃i
⊤z̃i

′)

exp(z̃i
⊤z̃i

′) +
∑

j ̸=i exp(z̃i
⊤z̃j)

]
. (6)

For convenience, define scalar quantities pi, pj’s as the softmax probability of predictions:

pi =
exp(z̃i

⊤z̃i
′)

exp(z̃i
⊤z̃i

′) +
∑

j ̸=i exp(z̃i
⊤z̃j)

, and (7)

pj =
exp(z̃i

⊤z̃j)

exp(z̃i
⊤z̃i

′) +
∑

k ̸=i exp(z̃i
⊤z̃k)

, if j ̸= i , (8)

where 0 ≤ pi, pj ≤ 1. Then gradient of the LUMP loss in Eq. 6 w.r.t. the anchor is

Eν

[
∂LLUMP

∂z̃i

]
= Eν

(pi − 1)z̃i
′ +

∑
j ̸=i

pj z̃j

 (9)

= Eν

(pi − 1) (νz′
i + (1− ν)u′

i) +
∑
j ̸=i

pj (νzj + (1− ν)uj)

 (10)

= Eν

(pi − 1)(ν)z′
i + (pi − 1)(1− ν)u′

i +
∑
j ̸=i

(pj)(ν)zj +
∑
j ̸=i

(pj)(1− ν)uj

 , (11)

where the equality holds between line 9 and 10 because of our linearity assumption. Therefore, the gradient w.r.t. the
current-task example’s representation is

Eν

[
∂LLUMP

∂zi

]
= Eν

[
∂LLUMP

∂z̃i

∂z̃i
∂zi

]
= Eν

[
ν
∂LLUMP

∂z̃i

]
(12)

= Eν

(pi − 1)(ν2)z′
i + (pi − 1)(1− ν)(ν)u′

i +
∑
j ̸=i

(pj)(ν
2)zj +

∑
j ̸=i

(pj)(1− ν)(ν)uj

 (13)

= (pi − 1)E[ν2]z′
i + (pi − 1)

(
E[ν]− E[ν2]

)
u′
i +

∑
j ̸=i

(pj)E[ν2]zj +
∑
j ̸=i

(pj)
(
E[ν]− E[ν2]

)
uj (14)

= (pi − 1)E[ν2]z′
i +

∑
j ̸=i

(pj)E[ν2]zj +
∑
j ̸=i

(pj)
(
E[ν]− E[ν2]

)
uj + (pi − 1)

(
E[ν]− E[ν2]

)
u′
i . (15)

Notice that this is a weighted sum of z′
i, {zj}j , {uj}j , and u′

i. The first and second terms are the weighted represen-
tations of views of x ∈ X the other two terms are the weighted representations of views of y ∈ Y .

Now, the coefficients involve pi, pj , which are the softmax probabilities given by Eq. 7 and Eq. 8; they also involve
E[ν],E[ν2], which are the first and second moments of Beta(α, α) where E[ν2],E[ν] − E[ν2] > 0. Therefore, it is
easy to see that the coefficients on z′

i,u
′
i are negative, and the coefficients on {zj}j and {uj}j are positive. This

conclusion holds as long as E[ν2],E[ν]−E[ν2] > 0 are satisfied; i.e., ν does not necessarily need to be sampled from
a symmetric Beta distribution as chosen by LUMP.

This concludes our proof for the first equality. The proof for Eν

[
∂LLUMP

∂ui

]
is similar due to symmetry.

B INCOMPATIBILITY BETWEEN BATCHNORM AND UCL
It has been shown that BatchNorm (BN) (Ioffe & Szegedy, 2015) is not suitable for SCL since its running estimates
of the feature moments (over the batch dimension) are biased towards the most recent task (Pham et al., 2021). An
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Table 5: KNN accuracy of methods trained on the 20-task Split-CIFAR-100 with BatchNorm (BN) or GroupNorm
(GN). 1st-Only denotes an offline model trained for the same number of steps but only on the first task. Numbers
in parentheses denote improvement over FT. The incompatibility between BN and UCL can be mitigated by using GN
instead. This allows models’ ability to tackle the core challenges of UCL to be more clearly reflected by FT∆.

Method BN FT ∆ GN FT ∆

FT 36.7 45.6
1st-Only 39.5 (+2.8) 40.5 (−5.1)
LUMP 45.4 (+8.7) 47.7 (+2.1)
CaSSLe 43.1 (+6.4) 48.0 (+2.4)
Offline 50.3 (+13.6) 52.5 (+6.9)

alternative normalization layer is GroupNorm (Wu & He, 2018), where the batch statistics are not needed because the
normalization is applied along the feature dimension. The performance of BatchNorm and GroupNorm has not been
investigated in UCL, although UCL usually requires much more training iterations than SCL. Thus, we hypothesize
that using BatchNorm is harmful in UCL and the improvement of UCL methods over FT may not be as large as
previously believed. In Table 5, we show that after we switch to GroupNorm, FT becomes a very strong baseline, and
existing UCL methods do not help as much, although all methods show improved performance. Moreover, a model
trained on only one task outperforms FT when equipped with BatchNorm but not GroupNorm, further showing the
detrimental effect of BatchNorm in UCL. Therefore, we use GroupNorm in our experiments to highlight the core
factors contributing to UCL performance.

C IMPLEMENTATION DETAILS

General details. For GroupNorm, we set the number of groups to min(32, ⌊#channels/4⌋). We replace the ReLU
activation functions following GroupNorm with Mish activation (Misra, 2020) to avoid dying ReLUs, or elimination
singularities (Qiao et al., 2019). We use the same data augmentation procedure and parameters as Zbontar et al. (2021);
Grill et al. (2020), and change the resized image size to 32× 32 for CIFAR-100 and 64× 64 for Tiny-ImageNet. We
set τ = 0.1 for all contrastive losses. We train all our models for 200 epochs with SGD optimizer, learning rate of
0.03, weight decay of 5e−4, and batch size of |X| = 256 on all benchmarks, following Madaan et al. (2022). We do
not use LARS because we do not find it make significant differences on batches of size 256. We train Offline for
the same number of steps as continual models. The models are trained on two NVIDIA Quadro RTX 8000 GPUs for
all experiments. For KNN evaluation, we follow He et al. (2020); Wu et al. (2018)’s set up, where we set k = 200 and
temperature τKNN = 0.1.

UCL methods. All hyperparameters are fine-tuned manually with at least three values. We adapt the official imple-
mentations of CaSSLe, LUMP to our codebase. Since POCON is a concurrent work and its code has not been made
public yet, we re-implement it. For online EWC, we normalize the diagonal Fisher information matrix for each task
following the authors (Schwarz et al., 2018) and set γ = 1; we use 50, 100 as the weight on the regularization loss
on the five and 20 task sequences of Split-CIFAR-100, respectively. For LUMP, we set the Beta distribution param-
eter α = 0.4 on all experiments; it’s the same value used by the authors on Tiny-ImageNet, and we find it performs
better than the authors’ parameter α = 0.1 on CIFAR-100. For online POCON, we save the model checkpoint every
ds = 2, 000 steps for CIFAR-100 and ds = 4, 000 steps for Tiny-ImageNet; we set the weights to 1 on all loss terms.
For DER, ER, and ER+, we set the weights to 1 on the additional loss terms. For all replay-based methods except for
LUMP, which requires |Y | = |X| = 256, we uniformly sample |Y | = 3

4 |X| = 192 examples from the memory at each
step for replay.

D EVALUATION RESULTS GIVEN TASK IDENTITIES

We do not provide access to the task identity for each example at test time in Sec. 4. In the scenario where task labels
are given during evaluation (Madaan et al., 2022), it remains an open question whether consolidation provides benefits.
We hypothesize that the consolidation term is beneficial because it potentially learns a broader set of features than FT
by increasing the diversity of batches for the contrastive loss.

To provide some evidence, we perform the same set of evaluations as in Sec. 4, but with task labels given to the model.
In other words, the model predicts the most probable class among classes within the same task as the ground truth class
i when calculating A·,i. The consolidation score (task-level KNN accuracy) is still calculated without task identities,
and thus stays the same. The results are shown in Table 6, Table 7, and Table 8. We find that the consolidation score
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Table 6: Results on standard Split-CIFAR-100 with five or 20 tasks. The ground truth task identity for each example
is given to the model at test time, so the model predicts the most probable class within the task. The best model in
each column is made bold and the second-best model is underlined. †Improved DER. §Online version of POCON. We
separate replay-based (top) and distillation-based methods (bottom) for easier comparisons.

5-TASK SPLIT-CIFAR-100 20-TASK SPLIT-CIFAR-100
A (↑) F (↓) K (↑) C (↑) T (↑) A (↑) F (↓) K (↑) C (↑) T (↑)

FT 72.4 (± 0.3) 1.7 (± 0.3) 7.9 (± 0.0) 59.1 (± 0.2) 36.3 (± 0.5) 84.4 (± 0.1) 4.2 (± 0.1) 6.6 (± 0.0) 47.2 (± 0.1) 28.6 (± 0.1)

ER 72.9 (± 0.2) 1.1 (± 0.2) 6.9 (± 0.3) 59.7 (± 0.4) 36.9 (± 0.3) 85.1 (± 0.2) 3.0 (± 0.2) 5.1 (± 0.4) 48.2 (± 0.5) 29.6 (± 0.3)

DER† 72.5 (± 0.3) 1.6 (± 0.4) 8.1 (± 0.2) 59.0 (± 0.4) 36.2 (± 0.4) 84.2 (± 0.2) 4.2 (± 0.2) 6.7 (± 0.5) 47.2 (± 0.2) 28.5 (± 0.2)

LUMP 71.2 (± 0.5) 0.9 (± 0.5) 5.8 (± 0.4) 58.4 (± 0.4) 35.8 (± 0.3) 85.3 (± 0.6) 2.4 (± 0.7) 4.3 (± 0.3) 49.1 (± 1.0) 29.3 (± 0.1)

ER+ 73.0 (± 0.5) 1.7 (± 0.3) 7.9 (± 0.2) 60.1 (± 0.3) 36.8 (± 0.5) 85.1 (± 0.2) 3.9 (± 0.1) 6.4 (± 0.2) 48.0 (± 0.1) 29.2 (± 0.1)

ER++ 72.5 (± 0.5) 1.3 (± 0.6) 7.0 (± 0.0) 59.8 (± 0.3) 36.8 (± 0.4) 85.3 (± 0.2) 2.8 (± 0.2) 4.9 (± 0.1) 49.0 (± 0.5) 29.6 (± 0.0)

Osiris-R (Ours) 73.3 (± 0.2) 1.3 (± 0.3) 6.7 (± 0.4) 60.1 (± 0.1) 37.7 (± 0.1) 86.5 (± 0.2) 2.5 (± 0.2) 5.4 (± 0.5) 50.5 (± 0.5) 30.2 (± 0.4)

EWC 65.6 (± 0.7) 1.4 (± 0.8) 3.7 (± 0.5) 53.9 (± 0.7) 32.8 (± 0.7) 79.0 (± 0.2) 1.9 (± 0.1) 3.7 (± 0.1) 39.4 (± 0.3) 24.0 (± 0.2)

CaSSLe 72.6 (± 0.2) 0.5 (± 0.4) 6.7 (± 0.5) 59.5 (± 0.3) 36.1 (± 0.4) 85.4 (± 0.1) 2.5 (± 0.1) 5.1 (± 0.2) 49.2 (± 0.2) 28.8 (± 0.2)

POCON§ 72.1 (± 0.7) 2.2 (± 0.8) 8.0 (± 0.5) 59.3 (± 0.3) 36.4 (± 0.4) 84.0 (± 0.2) 4.4 (± 0.4) 6.9 (± 0.3) 46.8 (± 0.3) 28.3 (± 0.3)

Osiris-D (Ours) 73.9 (± 0.1) 0.7 (± 0.3) 6.7 (± 0.5) 60.5 (± 0.1) 37.3 (± 0.2) 86.7 (± 0.3) 2.2 (± 0.3) 5.1 (± 0.2) 51.3 (± 0.1) 30.0 (± 0.2)

Offline 74.0 (± 0.2) - - 60.4 (± 0.4) - 88.7 (± 0.1) - - 53.9 (± 0.2) -

Table 7: Results on the 10-task sequences on structured CIFAR-100 and Tiny-ImageNet. The ground truth task identity
for each example is given to the model at test time, so the model predicts the most probable class within the task. The
two best models are marked. Osiris-D performs the best, surpassing Offline on Structured Tiny-ImageNet.

STRUCTURED CIFAR-100 STRUCTURED TINY-IMAGENET
A (↑) F (↓) K (↑) C (↑) T (↑) A (↑) F (↓) K (↑) C (↑) T (↑)

FT 64.6 (± 0.8) 7.6 (± 0.8) 10.0 (± 0.2) 59.2 (± 0.5) 29.9 (± 0.3) 57.8 (± 0.2) 6.2 (± 0.3) 6.4 (± 0.2) 43.5 (± 0.2) 34.4 (± 0.1)

LUMP 66.6 (± 0.4) 3.7 (± 0.2) 7.2 (± 0.4) 62.7 (± 0.7) 30.6 (± 0.1) 59.5 (± 0.8) 2.9 (± 1.1) 4.9 (± 0.2) 45.2 (± 0.8) 34.1 (± 0.3)

CaSSLe 66.4 (± 0.2) 4.2 (± 0.4) 7.7 (± 0.3) 61.6 (± 0.1) 30.5 (± 0.1) 59.0 (± 0.6) 4.3 (± 0.3) 5.4 (± 0.6) 43.9 (± 0.3) 34.7 (± 0.3)

POCON§ 64.5 (± 0.4) 7.6 (± 0.6) 9.8 (± 0.3) 59.6 (± 0.8) 30.0 (± 0.3) 58.1 (± 0.7) 5.5 (± 0.9) 6.6 (± 0.1) 43.6 (± 0.5) 34.0 (± 0.3)

Osiris-R (Ours) 67.3 (± 0.2) 4.9 (± 0.2) 7.6 (± 0.1) 62.8 (± 0.2) 32.3 (± 0.1) 59.9 (± 0.2) 4.4 (± 0.3) 5.9 (± 0.3) 45.1 (± 0.1) 35.2 (± 0.4)

Osiris-D (Ours) 67.8 (± 0.1) 4.6 (± 0.1) 8.0 (± 0.2) 64.2 (± 0.1) 32.0 (± 0.1) 61.5 (± 0.1) 3.2 (± 0.3) 5.6 (± 0.5) 46.5 (± 0.2) 35.6 (± 0.1)

Offline 69.2 (± 0.3) - - 67.9 (± 0.1) - 60.7 (± 0.2) - - 46.4 (± 0.2) -

still correlates with the accuracy, and Osiris-D consistently outperforms other models. In Table 8, without Lcross,
Osiris-D experiences a 4.1% consolidation score drop and a 2.3% drop in accuracy. This shows that Lcross benefits
the representation even in within-task discrimination.

Additionally, with consolidation, we expect the representations to separate all classes regardless of task identity. There-
fore, they put the least assumptions on what classes we try to discriminate at test time and should appeal for a broader
set of downstream use cases. For example, the test data is not required to be a subset of one of the tasks seen during
training.

E ANALYSIS ON OVERFITTING TO MEMORY

In Sec. 4.5, we briefly mentioned the potential issue of overfitting when using a memory for replay for ER, LUMP,
and Osiris-R. Specifically, we plot for replay-based methods the relative difference between contrastive loss of a
batch sampled from all data observed (Lall) and from the memory (Lmem), both excluding any data from the current
task. The relative loss difference is defined as Lall−Lmem

Lall
. A large difference could indicate the failure to generalize

the representations learned from memory to past tasks, which defeats the purpose of replay. For Osiris, we plot the
curves with h◦f in Fig. 2b and Fig. 4b and with g ◦f in Fig. 4a. In Fig. 4b, the curves for ER, LUMP, and Osiris-R
increase at first and become relatively stable afterwards. Their final values are much larger than zero, indicating
the possibility of overfitting. In contrast, Osiris-D does not overfit because it does not explicitly minimize the
contrastive loss on memory, which could explain its consistently lower forgetting than Osiris-R.
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Table 8: Ablation of Osiris-D’s variants on 20-task Split-CIFAR-100. The ground truth task identity for each example
is given to the model at test time, so the model predicts the most probable class within the task. Lcross benefits
representations even in within-task discrimination when not considering classes from other tasks.

A (↑) F (↓) K (↑) C (↑) T (↑)
w/o isolated space 85.6 (± 0.3) 2.8 (± 0.6) 4.9 (± 0.2) 49.3 (± 0.2) 29.8 (± 0.1)

w/o Lcross 84.4 (± 0.2) 4.1 (± 0.3) 6.2 (± 0.4) 47.2 (± 0.2) 28.9 (± 0.2)

w/o Lpast 86.3 (± 0.3) 3.1 (± 0.2) 6.1 (± 0.3) 50.4 (± 0.3) 30.0 (± 0.1)

Full 86.7 (± 0.3) 2.2 (± 0.3) 5.1 (± 0.2) 51.3 (± 0.1) 30.0 (± 0.2)

(a) Osiris’s curves are calculated with g◦f . (b) Osiris’s curves are calculated with h◦f .

Figure 4: Relative difference between contrastive loss on past-task data and on memory for replay-based methods. (a)
All curves are calculated with the projector outputs where Lcurrent is applied, i.e., with g ◦ f . (b) Same as Fig. 2b, for
Osiris-D and Osiris-R, we plot the curves calculated with the outputs of h◦f where Lpast is applied. The curves
for ER and LUMP are still calculated on their only projector branch, i.e, g ◦ f . Osiris-D does not overfit on either
branches.

While our results could indicate that Osiris-R overfits to the memory on the outputs of h ◦ f , the effect of Lcross on
the encoder f appears to be less sensitive to the precision of the representations produced by h ◦ f . In all of our results
(Tables 2, 3, 6, and 7), Osiris-R and Osiris-D are consistently the best performers in consolidation scores,
which leads to good overall accuracy. Since Osiris-D does not explicitly minimize the contrastive loss on the
memory, it does not overfit to it and always has lower forgetting than Osiris-R. Additionally, neither Osiris-R
nor Osiris-D overfits with the representations produced by g ◦ f as shown in Fig. 4a.

Overall, our findings empirically support the claim in prior work that using replay for Lpast may cause the model to
overfit to the memory in UCL (Fini et al., 2022), but also show that we still need the memory to improve consolidation,
which is crucial for performance.

F STRUCTURED CLASS ORDER

We list below the classes within each task in Structured Tiny-ImageNet we discussed in Sec. 4. Tasks 1-4 contain
classes in an indoor environment. Task 5 contains classes in both indoor and city environments and serves as
a soft transition. Tasks 6 and 7 contain classes in a city environment. Finally, tasks 9 and 10 contain classes in a
natural, wild environment.

• Task 1: trilobite, binoculars, American lobster, bow tie, volleyball, banana, fur coat, barbershop, sombrero, water
jug, bathtub, beer bottle, bell pepper, hourglass, ice cream, altar, lampshade, boa constrictor, frying pan, Christmas
stocking.

• Task 2: turnstile, tabby, potter’s wheel, chain, lemon, pill bottle, iPod, cockroach, oboe, punching bag, abacus,
refrigerator, sock, bannister, candle, plate, ice lolly, Yorkshire terrier, apron, drumstick.

• Task 3: poncho, dining table, neck brace, guacamole, gasmask, backpack, academic gown, vestment, cash machine,
CD player, espresso, potpie, syringe, orange, plunger, desk, Chihuahua, miniskirt, pretzel, bucket.
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• Task 4: organ, chest, guinea pig, stopwatch, sandal, broom, pomegranate, barrel, wok, comic book, computer
keyboard, meat loaf, pizza, basketball, remote control, teapot, mashed potato, teddy, cardigan, space heater.

• Task 5: Egyptian cat, rocking chair, wooden spoon, pop bottle, sunglasses, magnetic compass, sewing machine, jel-
lyfish, beaker, Labrador retriever, dumbbell, nail, obelisk, lifeboat, steel arch bridge, moving van, gondola, military
uniform, pole, beach wagon.

• Task 6: freight car, torch, umbrella, rugby ball, limousine, projectile, brass, go-kart, confectionery, pay-phone,
German shepherd, reel, trolleybus, crane, fountain, jinrikisha, convertible, tractor, butcher shop, thatch.

• Task 7: suspension bridge, bullet train, kimono, picket fence, water tower, school bus, maypole, birdhouse, sports
car, beacon, parking meter, bikini, swimming trunks, flagpole, triumphal arch, cannon, Persian cat, scoreboard,
police van, lawn mower.

• Task 8: dragonfly, scorpion, American alligator, tarantula, lion, golden retriever, mantis, bullfrog, African elephant,
snail, bighorn, baboon, sea cucumber, brown bear, cougar, seashore, king penguin, koala, ladybug, tailed frog.

• Task 9: black widow, ox, grasshopper, acorn, fly, Arabian camel, coral reef, cliff dwelling, goldfish, goose, spider
web, brain coral, barn, monarch, black stork, spiny lobster, standard poodle, sulphur butterfly, viaduct, albatross.

• Task 10: sea slug, chimpanzee, snorkel, slug, gazelle, dam, European fire salamander, hog, centipede, lesser panda,
walking stick, lakeside, bee, mushroom, dugong, cauliflower, bison, alp, orangutan, cliff.

G ADDITIONAL PLOTS

In this section, we show three additional sets of plots. Fig. 5 shows the accuracy versus extra storage for different
UCL models on the 20-task Split-CIFAR-100. Fig. 6 visualizes the pairwise cosine similarity distributions between
examples from different class pairs. Finally, Fig. 7 through Fig. 10 plot the per-task accuracy of FT, LUMP, CaSSLe,
and Osiris-D throughout training on 20-task Split-CIFAR-100.

Figure 5: Accuracy on 20-task Split-CIFAR-100 versus additional storage. Storage is calculated by counting each
additional model parameter besides the main model as well as each pixel (one channel) in memory as a 64-bit float.
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Environment 1 Environment 2 Environment 3 Overall Inter-Class Sim.

Figure 6: Left: pairwise feature similarity distributions between examples from the same (positive) or different (neg-
ative) classes, within each environment of Structured Tiny-ImageNet, as well as on all data (overall). The densities
are estimated with a Gaussian kernel. The intersections are marked with a darker shade and the values are obtained
by integrating the shaded area. An empty intersection of supports of the two distributions sufficiently entails a KNN
classifier with perfect accuracy, but it is not necessary. Right: mean cosine similarity between pairs of examples drawn
from pairs of classes.
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Figure 7: Task 1-5 accuracy throughout training on 20-task Split-CIFAR-100.

Figure 8: Task 6-10 accuracy throughout training on 20-task Split-CIFAR-100.

Figure 9: Task 11-15 accuracy throughout training on 20-task Split-CIFAR-100.

Figure 10: Task 15-20 accuracy throughout training on 20-task Split-CIFAR-100.
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