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Abstract

In this paper we introduce LifelongMemory, a new framework for accessing long-form egocentric
videographic memory through natural language question answering and retrieval. LifelongMemory gen-
erates concise video activity descriptions of the camera wearer and leverages the zero-shot capabilities
of pretrained large language models to perform reasoning over long-form video context. Furthermore,
LifelongMemory uses a confidence and explanation module to produce confident, high-quality, and inter-
pretable answers. Our approach achieves state-of-the-art performance on the EgoSchema benchmark for
question answering and is highly competitive on the natural language query (NLQ) challenge of Ego4D.
Code is available at https://github.com/agentic-learning-ai-lab/lifelong-memory.

1 Introduction

What did I 
put in the 
drawer?

LifelongMemory …
I closed the fridge door.

I opened the drawer.
I put the box in the drawer.

I picked a pack of flour.
…

I put the box in the drawer.

Figure 1: LifelongMemory employs natural language
descriptions to create an episodic memory. It uses an
LLM to sift through past events, retrieving specific
moments in response to queries.

Long-form egocentric video understanding has the
potential to make a tremendous impact in real-
life applications such as personalized AI assistants.
Imagine awkward moments when you find yourself
asking “where did I put my glasses” or “what is the
person’s name I just talked to.” A personalized AI
assistant with a video memory can help us search for
answers to questions like these. It takes in a ques-
tion in the form of a natural language, and outputs
either an answer or a video playback of the exact
moment when the event of interest took place.

However, despite the progress made on video and
natural language understanding in deep learning,
long-form egocentric video question answering remains challenging for two reasons. First, unlike short-
form videos [17, 40, 14] that usually only contain one single scene and action, long-form egocentric videos
can involve multiple scenes where the camera wearers perform numerous tasks and interact with different
people and objects. The abundance of details and long-range temporal dependencies make successful in-
formation retrieval difficult. Previous methods develop better video features to capture low-level action
and object information [11, 21, 22, 5, 31], yet fall short of long-form video understanding [27, 13]. Second,
question answering may require sophisticated reasoning of events and oftentimes end-to-end models do not
have enough supervision data to generalize and correctly understand different types of questions [30].

To address these two challenges simultaneously, we propose a unified framework, LifelongMemory, for
long-form video question answering using large language models (LLMs). We compress long video inputs
into concise text descriptions with our proposed Caption Digest component. The text format can be then
augmented to the context of an LLM for answering the questions and locating the most relevant time
window. The LLM is capable of general question answering, and unlike end-to-end models, it has zero-shot
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Figure 2: Our LifelongMemory Framework for Long-form Video Understanding. The video inputs are first
converted into captions using a pretrained MLLM and then condensed via Caption Digest. Next, captions
and queries are processed by an LLM to predict coarse temporal windows (for NLQ) or answers (for QA)
with explanations and confidence levels. For the NLQ task, the predicted windows are further refined by a
pre-trained NLQ model. For the video QA task, we ensemble the predictions of multiple runs and select the
answers with the highest confidence.

generalization. Moreover, we also prompt the LLM to produce a confidence level with a textual explanation,
both of which help refine the predictions and enhance the interpretability of the model outputs.

Our proposed framework achieves superior performance on two benchmarks for long-form egocentric
video understanding, including multi-choice Video Question Answering (Video QA) and natural language
query (NLQ). For zero-shot evaluation on the EgoSchema video QA benchmark [27], our method achieves
the state of the art which doubles the accuracy of pretrained video QA models [5, 44, 12, 42] and significantly
outperforms other LLM-based methods [48, 35]. In the Ego4D NLQ challenge, our method is able to increase
the precision of pretrained NLQ models [30, 15] by providing coarse-grained candidate temporal windows in
zero shot. In summary, our contributions are as follows:

• We propose a novel framework, LifelongMemory, that integrates pre-trained MLLMs to answer ques-
tions in long-form egocentric videos. It leverages the remarkable reasoning capabilities of LLMs to
tackle the challenge of long-range temporal understanding.

• Our method significantly outperforms prior models and concurrent LLM-based solutions on EgoSchema,
and remain highly competitive on Ego4D NLQ.

• Our framework enhances the interpretability and reliability of the results by providing a confidence
level and textual explanation of its prediction, revealing the reasoning process of LLMs.

2 Related Work

Multimodal Large Language Models (MLLMs) have recently demonstrated their impressive capabilities in
various downstream vision-language tasks [19, 18, 26]. In this paper, we discuss how to utilize frozen
MLLMs for long-form video understanding by experimenting with two specific tasks—Video Question An-
swering (Video QA) and Natural Language Queries (NLQ)—both of which require comprehensive under-
standing and reasoning of texts and videos. In the following paragraphs, we survey prior works on MLLMs,
Video QA, and NLQ.

Multimodal Large Language Models. Large language models (LLMs) [3, 51, 1, 33, 34, 2, 8, 7] have
demonstrated their excellent ability to understand and reason with natural language inputs [4, 16, 52]. To
extend this understanding and reasoning ability beyond text, many prior works have explored incorporat-
ing other modalities, especially visual perception, into LLMs. This leads to the rise of multimodal large
language models (MLLMs)[36, 45, 46]. LLaVA [24, 23] connects the CLIP visual encoder [29] with the lan-
guage decoder of an LLM and finetune them end-to-end on multimodal instruction-following data, achieving
competitive performance in general-purpose visual and language understanding. LaViLa [55] adds visual
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conditioning on the input to pre-trained LLMs, and finetunes them on Ego4D narrations [13] to create
automatic video narrators. These MLLMs serve as critical components in a broad range of downstream
applications, showcasing their strength in reasoning on multimodal data [43, 54, 10, 6, 9, 43]. Our work
shares the successes in utilizing MLLMs for understanding and reasoning on text and image/video data.
Although most current open-sourced MLLMs (such as LLaVA and LaViLa) only take one image or a very
short video as inputs, our proposed framework can integrate those pretrained MLLMs and leverage them for
the challenging task of long-form video understanding.

Video Question Answering with Multimodal LLMs. The success of LLMs in text QA [7, 33, 34, 1]
leads to an increasing trend of applying MLLMs in video QA tasks [41, 42, 47, 37, 28, 35, 48, 53]. Due to
the computational burden of large-scale pertaining, many prior works have explored leveraging pretrained
(M)LLMs for zero-shot or few-shot QA. R2A [28] retrieves textual descriptions from an external text corpus
based on the similarity of video frames and text features encoded by CLIP [29], then uses a pretrained
LLM to generate answers given the question and the retrieved descriptions. However, retrieval from a pre-
defined text corpus hinders scaling to unseen videos and results in vague or inaccurate video descriptions
that can decrease the accuracy of the subsequent QA step. Instead of obtaining captions by retrieval, some
prior works utilize a pretrained captioning model to generate high-quality descriptions of videos. VidIL [37]
obtains frame-level captions from BLIP [20] and retrieves labels of objects, attributes, and events from
pre-defined vocabularies using CLIP [29], then feed all these information into an LLM with a few labeled
examples. Despite its good performance on short videos [39], this approach is not suitable for long videos in
the wild because (i) pre-defined vocabularies limit the application of the approach and (ii) a large number of
noisy and redundant low-level details can distract the LLM from the main task. Our proposed framework is
more efficient and flexible: It is able to perform zero-shot video QA that only utilizes a concise list of distilled
captions without requiring a fixed keyword vocabulary. Most relevant to our work, Socratic models [47] show
qualitative examples of LLM’s zero-shot performance on some toy examples, where the key moments of the
input video are converted into a textual record by a captioning model. Concurrent work Vamos [35] and
LLoVi [48] employ a similar approach of using a captioning model to bridge videos and LLMs for zero-shot
video QA. Empirical evaluations show that our proposed framework significantly outperforms these two on
EgoSchema [27], a zero-shot video QA benchmark designed for long-range temporal understanding.

Natural Language Queries in Egocentric Videos. The Natural Language Queries (NLQ) task in-
volves localizing the temporal window corresponding to the answer to a question in a long video clip. This
task is challenging for end-to-end supervised video localization models [49, 50] due to the sparsity of an-
notations and the length of videos in the dataset. Prior works have focused on constructing a hierarchical
structure, augmenting the NLQ dataset and developing better video features through large-scale pretraining.
ReLER [25] proposes a novel multi-scale cross-modal transformer architecture, a video frame-level contrastive
loss, and two data augmentation strategies. InternVideo [5] improves the quality of video features by carefully
pre-training and fine-tuning a VideoMAE-L Model [32], and ensemble the features and predictions. More
recently, NaQ [30] introduces a data augmentation strategy to transform video narrations into training data
for the NLQ task, alleviating the problem of sparse annotation. NaQ++ ReLER, obtained by training the
ReLER model with NaQ data, was the previous state-of-the-art method for Ego4D NLQ. GroundNLQ [15]
is the current state-of-the-art for this benchmark. It adopts a two-stage pre-training strategy to respectively
train a video feature extractor and a grounding model on video narrations, and finally finetune the grounding
model on annotated data. Our work is complementary to these prior works in that they can be used in the
last stage of our proposed framework to produce more fine-grained predictions based on the predictions of
the frozen LLM.

3 LifelongMemory

In this section, we introduce our proposed LifelongMemory framework. To tackle the challenge of long-form
videos, we first transform egocentric videos into a comprehensive yet concise textual log and then further
condense the information via Caption Digest. Then, we use an LLM to predict answers (for Video QA)
or coarse temporal windows (for NLQ), along with confidence and explanation for interpretability. Finally,
the predictions are further refined depending on the task. Figure 2 outlines the workflow and we describe
different stages in detail below.
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CaptionTime

C looks around the house4560

C walks around the room4620

C talks with man B4680

C opens the fridge4740

C looks at the fridge4800

C opens the fridge4860

C closes the fridge4920

C walks in the house4980

C walks in the house5040

Video Captioning

Question: Where was the 
refrigerator?

LLM

In this task, you will merge a list of captions into 
a single, concise caption…

C opens the fridge

C walks into the house

CaptionTime

C walks in the house4470-4530

C talks with man B4650-4710

C opens the fridge4710-4890

C closes the fridge4890-4950

C walks into the house4950-5070

Caption Digest

Content + Query 
Similarity Filter

LLM Reasoning

LLM

Employ your advanced memory recall capabilities to 
pinpoint the time intervals that best respond to the 
questions provided. If the details are too vague or 
insufficient for a confident recall, indicate 'NA’.
In your responses to questions about past events, 
follow these guidelines…

Prediction: [4710, 4890]
Explanation: C opens the fridge after talking with 
man B and before closing the fridge.
Confidence: 3

MLLM

Figure 3: Example Caption Processing and LLM Reasoning for NLQ. 1) We use a multimodal LLM (MLLM)
to produce captions from a list of short video clips. 2) Content and query similarity filters are then applied
to remove redundant and irrelevant captions. Similar consecutive captions are merged by an LLM. 3) An
LLM is instructed to take inputs from the list of condensed captions and retrieve the most relevant interval
candidates. The same procedure is performed on the QA task.

3.1 Egocentric Video Captioning

We begin by summarizing the raw footage into a list of captions using pre-trained MLLMs (e.g . LaViLa [55]).
We sample image frames or short video clips at a fixed interval, and produce a line of caption per clip. The
text descriptions as a form of episodic memory enable the transformation of complex egocentric video footage
into a coherent log of daily activities, capturing life’s narrative in a more accessible and compressed format.

Caption Digest. Raw captions produced by MLLMs, however, can be rather verbose and repetitive, and
consequently hinder the downstream reasoning process, especially for long-form videos. We propose to create
a caption digest to condense the information. Moreover, we aim to increase the relevance of the captions in
relation to the target queries. Figure 3 shows an example of the caption digest process. First, we remove
uninformative captions (e.g . “looks around ...”). Second, we remove captions that are not relevant to the
query by comparing the embedding similarity. Third, we gather adjacent captions that share a high similar-
ity score and use an LLM to produce a single concise caption. The condensed list of captions then augments
the context of the LLM for further reasoning and processing.

3.2 LLM Reasoning

With the list of condensed captions with their corresponding time interval from the previous stage, we
leverage an LLM here for its impressive zero-shot context understanding and reasoning capability. We
combine captions and queries into an instructive and contextualized prompt. A snippet of the instruction
template is shown in Figure 3. The full prompt and a discussion of the prompt designs are in Appendix A.

We particularly instruct the LLM to aggregate information and imagine the visual scene underlying the
given captions. The LLM is instructed to take into consideration the full context in the template and utilize
different pieces of information to produce the most probable answer. For example, when asking “Who did
I interact with when I was shopping?”, the LLM is able to filter all captions and produce a list of intervals
involving “person x talking to C” where C is the subject in the video and X refers to the other person. The
LLM is also instructed to consider the loss of information when converting videos into concise captions. For
example, one query asks “What size of washer did I pick ?” but there are no captions explicitly mentioning
the washers. In this example, the LLM displays its capability to capture implicit information and infer
based on context. The LLM answers “choosing the time points where I picked items from the table or
the floor, as these instances may provide more context about the objects and their locations.” By grasping
nuanced relationships and dependencies within the given context, LLM is able to filter out the most relevant
information from the extensive video captions.

4



In addition to the predicted answers, we also ask the LLM to explain its predictions for more interpretabil-
ity. Specifically, we ask the LLM to output a sentence of explanation to encourage introspective thinking
and rate its confidence in the output out of three confidence levels. The verbalized confidence strategy [38]
can help us control the precision of the output in later stages.

3.3 Vote by Confidence (Video QA)

To increase the reliability of LLM predictions for video QA, we ensemble the LLM’s predictions using voting
by confidence. We repeatly perform the LLM reasoning step where the LLM is prompted to generate
predictions based on the same input in each run. From the pool of predictions, the answer with the highest
confidence score is selected. In cases where multiple answers have the same highest confidence, a random
selection is performed. By focusing on the most confident predictions, this ensemble step can further improve
the accuracy and robustness of the results.

3.4 Fine-grained Interval Refinement (NLQ)

Since the time intervals are subsampled, to obtain a fine-grained interval prediction for the NLQ task, we
revisit the video inputs and enhance our LLM interval predictions in the last stage. For this goal, we employ
a pretrained NLQ model and feed in candidate intervals predicted by our previous stage. The intervals are
padded with a small window of size α. Specifically, for each (si, ei), the new start time is s′i = max(si−α, s)
and the new end time is e′i = min(ei + α, e) where s and e are the start and end time of the original clip.
Then we extract video clips [v1, v2 . . . vn] according to the predicted intervals [(s′1, e

′
1), (s

′
2, e

′
2) . . . (s

′
n, e

′
n)].

When the prediction for a certain query contains multiple candidate intervals, we feed them along with
the target query into a classifier that is trained on NLQ data to select the optimal candidate v∗. For queries
without predictions (i.e. “NA”), we simply use the original full video. Localization within a coarse temporal
window makes the NLQ task easier compared to doing it on the original full-length video.

4 Experiments

In this section, we evaluate our LifelongMemory framework in real-world egocentric video query tasks.

4.1 Experiment Setup

EgoSchema. The EgoSchema dataset [27] consists of over 5,000 question-answer pairs for 250 hours of
Ego4D videos covering a wide range of human daily activities. For each question, the correct answer needs
to be selected from 5 choices based on a three-minute egocentric video. The dataset is curated by human
annotators to ensure all questions require long-term temporal understanding. We use the subset provided
by EgoSchema, which contains 500 question-answer pairs, for ablation studies on prompt designs, captioning
choices, and voting by confidence, then use the best setup for evaluation on the full benchmark.

Ego4D NLQ. The Ego4D dataset [13] is an egocentric video dataset including a wide variety of daily life
activities recorded by individuals wearing cameras. The NLQ task, as one of the episodic memory tasks of
Ego4D, requires localizing a temporal window of the video to answer a natural language query. The NLQ
annotations are from 227 hours of videos, with a total of 19,200 queries spanning 13 query templates. The
train/val/test split (60%, 20%, 20%) is composed of disjoint sets of video clips. The average video length is
approximately 8.7 minutes, while the average duration of a response window is only 9.3 seconds, representing
on average only 2% of the full video.

Evaluation Metrics. For the EgoSchema dataset, we use accuracy to evaluate our framework since it is
a multi-choice QA task. For the NLQ dataset, we adopt different metrics for different stages as below. In
the LLM Reasoning stage where we only have coarse-grained predictions, we evaluate on the validation set
with metrics including (i) the ratio of predictions that overlap with the ground truth (denoted as Overlap),
(ii) and the proportion of predictions where at least one candidate achieves an Intersection over Union (IoU)
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greater than 0.3 with the ground truth (denoted as IoU*@0.3 ). During the refinement stage for NLQ, we
obtain fine-grained predictions so we can evaluate the test dataset using the standard NLQ metrics – R@1
IoU@0.3 and R@1 IoU@0.5, which is the recall of top one prediction having IoU with the ground truth
larger than the threshold {0.3, 0.5}.

Caption Sources. We experiment with machine-generated captions and human-annotated captions and
test the effect of text-conditioned captioning.

• LLaVA: LLaVa [23, 24] is a multimodal LLM pre-trained on a diverse set of 1.2M publicly available
data, including various multimodal question-answering and reasoning tasks. To encourage LLaVA to
generate captions that are relevant to the query while not introducing false positives, we follow the
template proposed by LLaVA-1.5[23] and adopt the prompt “If there are factual errors in the questions,
provide a precise description of the image; if not, proceed answering the question. [queries].”

• LaViLa: LaViLa [55] is a multimodal LLM pre-trained on the video-narration pairs from Ego4D and
is thus capable of generating captions that mimic the ground-truth descriptions of the video. Each
caption is generated using 4 frames uniformly taken from a two-second video clip.

• Ego4D Narrations: Ego4D [13] narrations include written sentence narrations in English from human
annotators, describing a diverse set of activities in the dataset. The annotated narrations contain on
average 13.2 sentences per minute of video, which is not as dense as the LLaVA and LaViLa captions
that we sample every 2 seconds.

Caption Digest Details. The generated captions are distilled through filtering and merging in this step.
We first remove ambiguous captions containing keywords that are associated with blurry and noisy frames.
Then, we filter out irrelevant captions based on the similarity scores between the embedding of queries
and captions encoded by LaViLa. Lastly, we identify groups of similar consecutive captions by calculating
the similarity scores of the embeddings of neighboring captions and merge captions in the same group by
querying GPT-3.5 with prompt “In this task, you will merge a list of captions into a single, concise caption.
Focus on clarity and brevity while ensuring no critical details are lost in the merging process.”

NLQ Refinement Details. For the refinement stage, we train a classifier on the NLQ train set to select
the optimal candidate from multiple LLM predictions. To construct a video dataset similar to the real LLM
predictions, we randomly shift and scale the ground-truth temporal windows. We then mark those intervals
that have IoU with the ground truth larger than 0.5 as positives and randomly pick the same amount of
negative samples from intervals with IoU less than 0.1. We utilize video features encoded by InternVideo [5]
and EgoVLP [22] and adapt VSLNet [49], a span-based localization network, to this video classification task,
where we replace the localization head with a classification head. After obtaining the optimal candidate
temporal windows, we extend them by a window size of α to provide more context to the NLQ model and
then feed them into the state-of-the-art NLQ model, NaQ++ReLER [30, 25] and GroundNLQ [15], which
have been finetuned on the Ego4D NLQ dataset. This gives us fine-grained predicted temporal windows
that can reflect the answers to the target queries.

4.2 Qualitative Results

We visualize LifelongMemory results in Figure 4. For the EgoSchema QA examples, we show that the
captions capture objects and actions in the scene very well, and the LLM is then able to answer the question
correctly, using its reasoning capability. For the NLQ examples, we show that many LLM predictions
have high-quality overlaps with the ground-truth windows (without interval refinement). We note that
many successful retrievals rely on high-quality captions and we expect there can be a large room for future
improvement with a stronger captioning model. In both datasets, the LLM is able to explain its predictions
with a confidence level, enhancing the interpretability of the results. We provide more qualitative examples
in Appendix B.
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NLQ Question: Were was the hammer before I took it?

LLM Explanation: C picks the hammer from the floor. This suggests that the hammer was on the floor before C picked it up. Confidence: 3
LLM Prediction: [600, 660] GT: [644, 657] 

LLM Explanation: The grass was put in the bucket, as indicated in the interval 14220-14280. Confidence: 3
LLM Prediction: [14220, 14280] GT: [14131, 14403] 

NLQ Question: Where did l put the grass?

C presses the baseboard. C presses the door casing 
against the wall.

C picks the hammer from the 
floor.

C removes the wall trim with 
his left hand.

C removes the baseboard 
with the hammer.

C touches the horse poop. C pours the horse feed in the 
sieve.

C pours the grass in the 
bucket.

C pours the snow from the 
snow blower.

C pours the powder on the 
snow.

EgoSchema Question:  What was the primary purpose of the cup of water in this video, and how did it contribute to the overall painting process?
A0: To provide a source of water for the paintbrush.
A1: To provide a place to store the paintbrush."
A2: To provide a place to dispose of the paintbrush.
A3: To provide a place to rest the paintbrush.
A4: To clean the paintbrush.

EgoSchema Question: What is the overall purpose of c's actions in this video? how do the actions of the man contribute to this purpose?
A0: C is trying to build a tower out of tiles. the man's actions contribute to the purpose of the video by providing c with a steady surface to build on. 
A1: C is trying to solve a puzzle. the man's actions contribute to the purpose of the video by providing c with clues to help solve the puzzle.
A2: C is trying to create a work of art. the man's actions contribute to the purpose of the video by providing c with inspiration and feedback.
A3: C is trying to teach the man how to play dominoes. the man's actions contribute to the purpose of the video by providing c with a willing student.
A4: C is playing a game of dominoes with a man. the man's actions contribute to the purpose of the video by providing c with an opponent to play against.

LLM Prediction: 4 Confidence: 3 
LLM Explanation:  The cup of water was primarily used to clean the paintbrush and to mix the paint, as indicated by the repeated actions of dipping and stirring the brush in the cup.

LLM Prediction: 4 Confidence: 3 
LLM Explanation: Throughout the video, C and the man are seen interacting with dominoes and tiles on a table, suggesting they are playing a game of dominoes.

Figure 4: EgoSchema QA and Ego4D NLQ examples using LaViLa and GPT-4. The groud-truth answers
are in red and the LLM predictions are in blue. The sampled frames are manually picked from the raw video
input to show key events related to the query.

4.3 Quantitative Results

EgoSchema Benchmark Results. Our method achieves state-of-the-art performance on EgoSchema, as
shown in Table 1. Due to the challenge of long-form videos, prior state-of-the-art video QA models [5, 42]
struggle at this task with an accuracy not much better than random (20%). When compared with concurrent
works – LLoVi [48] and Vamos [35] – that also leverage GPT-4, our approach outperforms them with a
significant margin of over 10%. These empirical results confirm LifelongMemory is a simple yet effective
framework that can reason and answer questions of very long egocentric videos.
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Table 1: Zero-shot QA on EgoSchema with Different Models. * represents ensembled results using vote by
confidence. Subset is 500 question-answer pairs provided by EgoSchema for validation.

Model LLM Input Subset Full

FrozenBiLM [42] - 90 frames - 26.9
InternVideo [5] - 90 frames - 32.1
Vamos [35] GPT-4 mixed 51.2 48.3
LLoVi [48] GPT-3.5 180 captions 57.6 50.3
LLoVi [48] GPT-4 180 captions 58.3 -

Ours Llama3-8B 90 captions 60.4 -
Ours GPT-3.5 90 captions 64.0 -
Ours Claude-3-Haiku 90 captions 64.8 55.2
Ours GPT-4 90 captions 68.0 62.1
Ours* GPT-4 90 captions 69.0 62.4
Ours GPT-4o 90 captions 70.6 64.6
Ours* GPT-4o 90 captions 72.0 64.7

Table 2: Ego4D NLQ benchmark results, using GPT-4. Our approach filters out noisy content in the video
for the pretrained NLQ models, increasing the precision of the predictions of the NLQ models. Reported
metrics all use predictions that rank the first.

Method Set Mean IoU=0.3 IoU=0.5

NaQ++ [30] val 20.20 25.00 15.40
Ours (LaViLa, NaQ++) val 19.00 23.40 14.61
Ours (Ego4D, NaQ++) val 21.09 26.12 16.06

NaQ++ [30] test 17.67 21.70 13.64
Ours (LaViLa, NaQ++) test 18.06 22.28 13.84
GroundNLQ [15] test 20.08 23.43 16.71
Ours (LaViLa, GroundNLQ) test 20.27 23.68 16.86

Ego4D NLQ Benchmark Results. We compare the performance of our method and two other compet-
itive methods on the Ego4D NLQ benchmark1 in Table 2. Our method with Ego4D ground-truth narrations
achieves the best performance in the validation set and our method with GroundNLQ as the refinement
model achieves the best performance in the test set. LifelongMemory is a flexible framework that can be
plugged into any pretrained captioning model and video localization model, suggesting the potential of our
method for future improvement using better pretrained MLLMs.

Captioning Model Choices. We compare the effect of different caption sources in Table 3. Although
LLaVA generates longer captions conditioned on the queries, the performance of LaViLa is significantly
better than LLaVA. This indicates the necessity of adopting an egocentric captioning model that focuses on
the core activity of the individual. Despite the effectiveness of LaViLa in this task, we identify that LaViLa
tends to generate false positive captions as it is finetuned on Ego4D data. We thus evaluate the ground-truth
captions provided by the Ego4D Narrations data and observe that it achieves the best performance with
significantly fewer captions. This confirms our assumption that an accurate well-crafted set of captions can
effectively summarize the information of the camera wearer’s activity in egocentric videos.

LLM Choices. We compare the effect of different LLMs for EgoSchema and NLQ respectively in Table 1
and Table 3. We observe that GPT-4 and GPT-4o significantly outperform GPT-3.5 and open-source
models like Llama [33, 34, 2] and Vicuna [7] for both datasets. Note that the performance drop caused by
weaker LLMs is much larger for the NLQ task because this task requires more precise instruction following
capabilities: weaker models often misunderstand the prompt and output an answer instead of a list of

1Our results of GroundNLQ are slightly lower than their reported numbers. Since GroundNLQ has not released all check-
points, we are unable to reproduce the results.
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Table 3: NLQ performance using different caption and LLM components. The bold number denotes the
highest and the underlined the second highest. † represents predictions with a confidence level of 3. NA
represents the ratio of null predictions, and all other metrics do not include null predictions. Count represents
the number of captions, and Length represents the average word count of captions.

Captions Count Length LLM Overlap Overlap † IoU*@0.3 IoU*@0.3 † NA

Ego4D 109 7.95
GPT-4 51.73 53.98 15.99 27.38 40.29
GPT-3.5 31.27 33.15 0.91 4.34 94.13

LaViLa 186 6.40
GPT-4 36.61 38.35 9.74 19.22 47.04
GPT-3.5 20.47 22.33 1.29 4.78 89.75

LLaVA 250 52.52 GPT-4 6.42 8.79 1.50 2.71 60.92

Table 4: Ego4D NLQ and EgoSchema QA performance using LaViLa + GPT-4, with different frame sampling
intervals and digest strategy.

Ego4D NLQ EgoSchema
Freq. Digest # Captions Overlap Overlap† IoU*@0.3 IoU*@0.3† # Captions Acc

4s Yes 70 33.55 36.99 6.46 14.64 39 26.4
2s Yes 186 36.61 38.35 9.74 19.22 75 68.0
2s No 250 23.71 23.89 4.92 11.28 90 68.0

temporal intervals, leading to a high NA ratio. As our framework is agnostic to LLMs—it’s very easy to
plug in a future version of LLMs to further boost the performance.

Caption Digest. We evaluate the effect of caption digest in Table 4. With Caption Digest, we discard
ambiguous and irrelevant captions and use LLM to merge similar ones as described in Section 4.1. For NLQ,
this technique significantly improves both metrics by around 10%, suggesting that a concise context leads to
a much better retrieval performance. However, similar effects are not observed in EgoSchema as the original
undigested context length is already relatively small (i.e. less than 100 captions). Since reduced context
lengths save the computation costs, we adopt caption digest for both datasets.

Table 5: Effect of explanation and confidence levels.

Ego4D NLQ EgoSchema
Conf. Level Overlap IoU*@0.3 Acc.

≥ 1 36.46 9.63 68.0
≥ 2 36.49 17.52 69.7
≥ 3 38.20 19.06 74.6

Explanation Overlap IoU*@0.3 Acc.

No 32.73 8.65 64.2
Yes 36.61 9.74 68.0

Caption Sampling Interval. Given the same
captioning models and preprocessing process,
smaller caption intervals lead to higher performance
as they provide richer contexts for the LLM. Since
each Ego4D video contains a large amount of ac-
tivities, coarse-grained captioning is very likely to
miss key moments and results in a loss of informa-
tion. Decreasing the sampling frequency of caption-
ing leads to a large drop in the accuracy of predic-
tions of both NLQ and EgoSchema, as shown in Ta-
ble 4. It is worth noting that using very limited
captions leads to a very low EgoSchema accuracy
that is not much better than random guess (20%)
due to the significant information loss.

Effect of Explanation. We also experiment with different prompts in Table 5. To encourage LLM
reasoning step by step, we provide detailed instructions on how to retrieve the temporal windows and answer
the queries while explicitly asking it to explain its prediction. The request for explanation encourages the
LLM to reason step by step and improves the performance in both datasets. Moreover, providing textual
explanations also increases the interpretability and reliability of the model outputs.
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Effect of Confidence Levels. To encourage the LLM to make more reliable predictions, we also explicitly
ask the LLM to predict a confidence level for each of its own outputs. We report the relationship between
scores and their confidence levels in Table 5. The increase in confidence scores leads to an increase in accuracy
in both datasets, suggesting the verbalized confidence scores are calibrated. For EgoSchema, we also use
confidence level to vote during model ensembling, leading to a 0.1-0.3% increase in test accuracy as shown
in Table 1.

4.4 Error Analysis

The majority of errors stem from the captioning step, where inevitable information loss occurs during the
transformation from long video inputs into text, as shown in 5. For NLQ with insufficient information, we
encourage the LLM to make null predictions and rely on the refinement stage to make the final prediction
based on the full input video. On the contrary, we encourage the LLM to select the most plausible answer
for EgoSchema when uncertain because we don’t rely on a pretrained QA model in the refinement stage.
Our prompts are included in Appendix A.

We also observe that sometimes the LLM proposes multiple temporal windows for NLQ that seem to
be reasonable, but only one ground-truth answer is available, as shown in Appendix C. This suggests some
NLQ queries are ambiguous and require more careful annotations.

Question: Where was the scissors before i picked it?

LLM Explanation: There is no mention of scissors in the provided memory.. Confidence: 1
LLM Prediction: [] GT: [9319, 9342]  Scissors(manually labeled): 

Q: What were the key steps c took in cleaning the dog mat from start to finish, and what tools were used in the process? 
A0: C picks up a dog mat, puts it in the sink, washes it with soap and water, and then dries it off. 
A1: C picks up a dog mat, puts it in the sink, washes it with soap and water, and then puts it in the dryer. 
A2: C picks up a dog mat, puts it in the sink, washes it with soap and water, and then puts it in the washing machine. 
A3: C picks up a dog mat, puts it in the sink, washes it with soap and water, and then puts it in the dishwasher. 
A4: C picks up a dog mat, puts it in the sink, washes it with soap and water, and then rinses it off.

LLM Prediction: 0 Confidence: 1
LLM Explanation: There is no mention of a dog mat, soap, dryer, washing machine, or dishwasher in the video description. 

Figure 5: Error caused by insufficient captioning. The upper figure is an NLQ example and the lower figure
is an EgoSchema example. LLM predictions are in blue boxes and the ground truth is in red.

5 Conclusion

In this paper, we propose LifelongMemory, a novel framework that leverages pre-trained MLLMs for an-
swering natural language queries in long-form egocentric videos. To address the challenges of long-range
temporal dynamics, we condense the input videos into a concise textual log and utilize an LLM to com-
prehend the context and answer the given queries. Our method achieves state-of-the-art performance on
EgoSchema and remains highly competitive on Ego4D NLQ, with enhanced interpretability provided by
verbalized confidence and explanation. LifelongMemory showcases the potential of leveraging LLMs in video
understanding and opens up opportunities for personalized AIs that can answer daily queries for individuals
requiring assistance.
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A Prompting

We provide the complete prompt used for EgoSchema (Figure 6) and Ego4D NLQ (Figure 7). As the NLQ
dataset contains multiple queries for one video clip, we avoid passing the same caption list multiple times
by including all queries of the same clip in the prompt to reduce the cost of API calls. We provide an
instructive prompt with detailed steps and ask the LLM to produce responses in the structured format
to expedite post-processing. Note that we encourage the LLM to refuse to answer NLQ questions if the
context is not informative so we can feed the full-length video into the refinement stage later. In contrast,
we encourage the LLM to pick the most possible answer for EgoSchema because we must provide an answer
to each question and there is no refinement stage for the QA task.

QA System Prompt

You are individual C, with others represented as O. In your responses to questions about past events, it is vital to provide not only 
the key You are presented with a textual description of a video clip. Your task is to answer a question related to this video, 
choosing the correct option out of five possible answers. It is crucial that you imagine the visual scene as vividly as possible to 
enhance the accuracy of your response. After selecting your answer, rate your confidence level in this choice on a scale from 1 to 
3, where 1 indicates low confidence and 3 signifies high confidence. Please provide a concise one-sentence explanation for your 
chosen answer. If you are uncertain about the correct option, select the one that seems closest to being correct.

QA User Prompt

Memory:

timestamp              caption
 0-60   #C C paints a picture
 …    …

###

Question: What was the primary purpose of the cup of water in this video, and how did it contribute to the overall painting 
process?

Option 0: To provide a source of water for the paintbrush.
…

###

The dictionary with keys of prediction, explanation, confidence, where prediction is a number:

Figure 6: System prompt and user prompt for video QA (EgoSchema). The text in blue should be replaced
by the captions and the corresponding question-answer pair.
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You are individual C, with others represented as O. In your responses to questions about past events, it is vital to provide not only 
the key moment but also the relevant context. To enhance the clarity and reliability of your answers, please also indicate your 
confidence level in each response, with 1 being the lowest and 3 being the highest. Follow these guidelines: 
1. Incorporate Context: Expand your answers to include not just the central event but also the context preceding and 

following it. 
2. Unify Related Actions: When a question requires a sequence of actions, such as 'Where did I put the scarf after I closed the 

door?', merge all relevant events into a single interval that conveys the full story. 
3. Opt for Broad Understanding: Favor comprehensive intervals that cover all relevant details over more precise but less 

informative ones. If the information is too vague, respond with 'NA' and include your confidence level to reflect the 
certainty of your response. 

4. Assign a Confidence Level: After providing a time interval, add a confidence level to each response: 
 - Level 1: The information is present, but the context is not clear or the captions are ambiguous. 
 - Level 2: The information is fairly clear and context is somewhat discernible, but there is still some uncertainty.
 - Level 3: The information and context are clear and well-supported by the captions, ensuring high confidence. 

NLQ System Prompt

NLQ User Prompt

As individual C, with others as O, employ your advanced memory recall capabilities to pinpoint the time intervals that best 
respond to the questions provided. Ensure each answer encompasses not just the event in question but also the relevant context 
before and after. If the details are too vague or insufficient for a confident recall, indicate 'NA'. Remember to merge related 
events into a continuous interval to reflect the full narrative.

###

Questions:

query_index   query
1  where was the jenga block?

  …       …

###

Memory:

timestamp  caption
 150-210    C converses with man X

  …       …

###

Please provide a TSV with columns: query_index, predictions, explanation, confidence.

Figure 7: System prompt and user prompt for NLQ. The text in blue should be replaced by the queries and
captions in the video clip.
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B Additional Qualitative Results

We visualize the outputs of the LLM in Figure 8 and Figure 9. As shown by abundant qualitative examples,
the LLM can produce high-quality answers in zero shot. It is worth noting that the machine-generated cap-
tions may contain objects that are not present in the video or miss critical information that can potentially an-
swer the target query. Based on the imperfect captions, the LLM is still able to capture the key event and pro-
duce high-quality responses, suggesting a more powerful captioning model will further boost the performance.

Question: What did I pick from the fridge?

LLM Explanation: You picked a tray and a packet of ice cubes from the fridge between 9240-9300 and 9300-9360. Confidence: 3
LLM Prediction: [9240, 9360] GT: [9258, 9528] 

Question: Where did I put the cooking pots?

LLM Explanation: C puts the cooking pot in the drawer. Confidence: 3
LLM Prediction: [6600, 6660] GT: [6629, 6749] 

LLM Explanation: Before you picked up the plate, it was in the cupboard as indicated between 6480-6540. Confidence: 3
LLM Prediction: [6480, 6540] GT: [6361, 6542] 

Question: Where was the plate before I picked it up?

Question: What colour is the jacket I touched at the cloth rail? 

LLM Explanation: You touched a jacket at the cloth rail around the 1680-1740 timestamp. However, the color of the jacket is not specified in the memory recall. Confidence: 1
LLM Prediction: [1680, 1740] GT: [1316, 1860] 

Figure 8: NLQ Examples. Each figure represents a two-second 30fps video clip (which is 60 frames). LLM
interval predictions are denoted as blue boxes and the ground truth is in red. LLM engine here is GPT-4
and the captioning model is LaViLa. To illustrate the reasoning skills of LLMs, we show the raw LLM
predictions without any refinement.
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Q:  Based on the repetitive actions throughout the video, what would you say is c's primary task or goal in the given environment? 
A0: To move the chair. 
A1: To clean the floor. 
A2: To touch the shelf. 
A3: To touch the cat. 
A4: To move the guitar bag. 

Q: Can you identify the primary activity that c is engaged in throughout the video, and how they incorporated breaks or pauses during this activity? 
A0: C is working on a computer. 
A1: Currently, c is spending time attentively watching an entertaining movie. 
A2: Currently, individual c is enjoying and listening to their favorite music. 
A3: C is playing a video game. 
A4: Currently, c is peacefully sleeping and resting.

Q: In the context of the video, what is the primary purpose of the character's actions and how do they achieve this purpose? 
A0: The character is making bread. 
A1: In this scene, the main character is enthusiastically making a delicious pizza. 
A2: The main character is joyfully making delicious cookies at home. 
A3: The main character in the story is skillfully making a delicious cake. 
A4: The character is making dough.

Q: What is the primary purpose or task that c completes at the parking lot, and how does this compare to earlier actions in the video? 
A0: You will need to carefully fold the receipt into a smaller size. 
A1: Leisurely stroll to walk around the extensive parking lot area. 
A2: In order to open the car boot effortlessly. 
A3: To move the supermarket stroller. 
A4: To put the shopping bags in the car boot.

LLM Prediction: 1 Confidence: 3 
LLM Explanation:  C's primary task is to clean the floor as it is the most repeated action in the video log.

LLM Prediction: 3 Confidence: 3 
LLM Explanation: Throughout the video, C is primarily engaged in playing a video game, with occasional breaks to look around and at one point to take a cup of water.

LLM Prediction: 4 Confidence: 3 
LLM Explanation: The character is seen pouring water, using a mixer, and a weighing scale, which are actions typically associated with making dough.

LLM Prediction: 4 Confidence: 3 
LLM Explanation: The primary task that C completes at the parking lot is putting the shopping bags in the car boot, as indicated by the captions at timestamps 2370, 2850, and 2970.

Figure 9: EgoSchema Examples. Each figure represents a two-second 30fps video clip (which is 60 frames).
LLM predictions are denoted as blue boxes and the ground truth is in red. LLM engine here is GPT-4 and
the captioning model is LaViLa.
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C Ambiguity in NLQ Annotations

LLMs generate more than one interval when there are multiple temporal windows that can potentially answer
the given query. We observe that some temporal windows proposed by the LLM seem reasonable despite
only one ground-truth answer available in Ego4D NLQ annotations. These queries need to be filtered or
modified to reduce ambiguity.

Question:  What did I put in the fry pan?

LLM Explanation: C puts the vegetables in the pan at two different intervals. Confidence: 3

LLM Prediction: [3240, 3300], [4740,4800] GT: [4722, 4778] 

C pours the onions in the 
frying pan.

C pours the onions in the 
frying pan.

C puts the vegetable in the 
pan.

C puts the spice in the pan. C picks up the bottle.

C cuts the paper. C puts the knife on the plate. C puts the vegetables in the 
pan.

C stirs the food in the frying 
pan with the chopstick in her 
right hand.

C stirs the onions in the frying 
pan with the chopstick in his 
right hand.

Question:  In what location did i see the stove?

C washes the hands. C looks around. C puts the piece of cloth in 
the gas cooker.

C adds the spice in the 
cooking pot.

C walks around the room.

C washes the towel. C looks around. C puts on the cooker. C puts the foil paper on the 
cooker.

C puts the spice in the 
cooking pot.

LLM Explanation: C interacts with the stove at several points: puts a piece of cloth in the gas cooker at 4080-4140, puts on the cooker at 13200-13260, and puts a packet of coffee on 
the cooker at 14040-14400. Confidence: 3
LLM Prediction: [4080, 4140], [13200, 13260], [14040, 14400] GT: [4088, 4256] 

C puts the packet of coffee on 
the cooker.

C puts the packet of coffee on the 
cooker.

C looks at the packet.C fixes the paper on the cooker. C opens the packet of charcoal.

Figure 10: Examples of Ambiguous Queries. LLM predictions are in blue and the ground truth
is in red.
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