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Abstract

Large language models have recently shown promising progress in mathematical reasoning
when fine-tuned with human-generated sequences walking through a sequence of solution steps.
However, the solution sequences are not formally structured and the resulting model-generated
sequences may not reflect the kind of systematic reasoning we might expect an expert human to
produce. In this paper, we study how to build stronger reasoning capability in language models
using the idea of relational abstractions. We introduce new types of sequences that more explic-
itly provide an abstract characterization of the transitions through intermediate solution steps
to the goal state. We find that models that are supplied with such sequences as prompts can
solve tasks with a significantly higher accuracy, and models that are trained to produce such se-
quences solve problems better than those that are trained with previously used human-generated
sequences and other baselines. Our work thus takes several steps toward elucidating and im-
proving how language models perform on tasks requiring multi-step mathematical reasoning.

1 Introduction
Deep learning has had tremendous success in a wide range of domains, such as vision [He et al.,
2016], language [Brown et al., 2020], and playing games at superhuman levels [Mnih et al., 2015,
Silver et al., 2016, Vinyals et al., 2019]. Yet despite these accomplishments, reasoning yet appears
to be limited, especially in areas of formal and mathematical reasoning [Saxton et al., 2019, Cobbe
et al., 2021, Hendrycks et al., 2021], a puzzling phenomenon considering that many of the problems
explored in previous research are ones that humans often successfully learn in primary and secondary
education.

Recent findings in models of algorithmic reasoning suggest that neural networks, like humans,
benefit from learning to solve mathematics through a chain of reasoning steps rather than attempting
to produce the final output as a direct mapping from the problem prompt [Recchia, 2021, Nye et al.,
2021, Hendrycks et al., 2021, Cobbe et al., 2021]. However, while various papers have explored
how multi-step reasoning outperforms direct mapping, they often introduce and conduct analyses
using new datasets each with different methods for how the individual steps are defined. This
raises the question if and how the various formats of the reasoning steps affect learning differently.
Unfortunately, this problem is difficult to address directly by simply comparing the performances
between the datasets since they each contain questions of varying difficulty, potentially confounding
the results. Moreover, some datasets use natural language [Cobbe et al., 2021, Hendrycks et al.,
2021] which introduces further variance depending on the vocabulary and sentence structure, some
avoid natural language altogether [Saxton et al., 2019, Lample and Charton, 2020], and some begin
with natural language inputs but translate them into purely arithmetic operations while solving
[Wang et al., 2017, Amini et al., 2019]. Thus, to understand how the solution structure impacts
model learning, a common set of problems with varied solution approaches are needed.

In this work, we address this question and challenge by focusing on a natural language-based
task, which requires integrating mathematical reasoning with world knowledge and coping with
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the ambiguity of natural language, and a synthetic task that captures what we see as some of the
central features of the mathematical reasoning. At their core, both tasks involve reasoning about how
different entities relate to each other, and formulating appropriate arithmetic equations to perform
the corresponding numerical computations. Thus, in both tasks, we can decompose each step of
the solution into abstract relational reasoning and arithmetic expressions, which can then be used
to recompose the solution sequence in different forms. We find that models, when prompted with
the correct relational abstraction, can solve problems at a substantially higher accuracy, suggesting
that relational abstraction is the more challenging component to single out in the problem solving
process. Models that are trained with explicit relational abstractions also perform better than those
that are not, which makes explicit relational abstraction a useful task for pre-training or fine-tuning.

We summarize our main contributions as follows:

• We propose to decompose the problem solving process into relational abstraction and arithmetic
expression, which is amenable to large language models and is a middle-ground between neuro-
symbolic, natural language-based, and arithmetic-only approaches.

• We find relational abstraction improves problem solving performance when supplied either during
training or testing, making it a crucial component to study separately.

• We annotate the GSM-8K dataset [Cobbe et al., 2021] with relational abstractions and will release
them as a supplementary dataset with the paper.

• We introduce a synthetic task paralleling aspects of natural relational reasoning and demonstrate
the importance of engaging with the relational abstractions for solving this task.

2 Related Work
Models of mathematical reasoning. Although computational models of mathematical reason-
ing have been under research for over half a century [Bobrow, 1964], application of neural network
models began much more recently using recurrent networks for sequence-to-sequence prediction
[Wang et al., 2017]. Following the advent of the transformer model [Vaswani et al., 2017], Sax-
ton et al. [2019] compared the efficacy of LSTMs, a relational network [Santoro et al., 2018], and
transformers, and found that transformers well outperform the other architectures. However, this
approach is limited in that the model is trained to produce only the final answer without any inter-
mediate steps. Other models and datasets have been proposed to include intermediate equations and
programs [Shi et al., 2015, Upadhyay and Chang, 2015, Amini et al., 2019, Miao et al., 2020]. Further
advancements came with the availability of large language models [Brown et al., 2020, Thoppilan
et al., 2022, Chowdhery et al., 2022, Lewkowycz et al., 2022] and datasets involving full step-by-step
solutions in natural language [Ling et al., 2017, Hendrycks et al., 2021, Welleck et al., 2021, Cobbe
et al., 2021, Drori et al., 2021].

Yet despite the optimism towards transformer-based models for mathematical reasoning [Lample
and Charton, 2020], Hendrycks et al. [2021] argues that unlike in language benchmarks [Kaplan et al.,
2020], simply scaling up the model size is an intractable strategy for solving mathematics problems,
especially ones with of higher difficulty. Another strategy suggested by Cobbe et al. [2021] is the use
of verifiers trained on model-generated responses to re-rank candidate sequences. Chain-of-thought
prompting [Wei et al., 2022, Wang et al., 2022] circumvents fine-tuning altogether by providing
examples at evaluation time as part of the context, and boasts comparable results to Cobbe et al.
[2021] using just a few exemplars at test time, but such behavior only emerges on the largest lan-
guage models with over 100B parameters. Compared to prior works, we propose using relational
abstractions as an auxiliary outputs. For math word problems, we structure the relations in the form
of natural language, and thereby leverage the existing knowledge built in large language models.

Learning with auxiliary language. The relational abstraction studied in this work can be cast
as a form of auxiliary explanation to reach the goal. Beyond its role as the medium for step-by-step
reasoning, language has been observed to assist neural networks in learning other tasks. Andreas
et al. [2018] found that in rule-based image classification, string manipulation, and navigation tasks,
generating and using language descriptions allowed the model to outperform those that learned to
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Num 1

A. Numeric only B. Relational-First C. Interleaved D. Multitask

Num 2 Num 3

Num 1 Num 2 Num 3

Rel 1 Rel 2 Rel 3 Num 1

Num 2 Num 3

Rel 1 Rel 2

Rel 3 Num 1 Num 2 Num 3

Rel 1 Rel 2 Rel 3

<relation> eggs laid per day - eggs 
for breakfast - eggs for baking = 
remaining eggs;
remaining eggs * price per egg = 
amount earned daily from eggs
OR
<equation> 16-3-4=9; 9*2=18

<relation> eggs laid per day - eggs 
for breakfast - eggs for baking = 
remaining eggs;
remaining eggs * price per egg = 
amount earned daily from eggs 
<equation> 16-3-4=9; 9*2=18

eggs laid per day - eggs for 
breakfast - eggs for baking = 
remaining eggs; 16-3-4=9;
remaining eggs * price per egg = 
amount earned daily from eggs; 
9*2=18

16-3-4=9; 9*2=18

Math Question: Janet's ducks lay 16 eggs per day. She eats 3 for breakfast every morning and bakes muffins for her friends every day with 4. She sells the 
remainder at the farmers' market daily for $2 per fresh duck egg. How much does she make every day?

Unit Conversion Task: H = 2A; F = 3D; B = 3A; I = 3F; E = 3B; J = 2I; B = 3C; F = 4E; G = 3C; I = 4H; D = 2C; G = 1B;
Convert J to G (mod 5)

1 * 2 = 2; 2 * 3 = 1; 1 * 3 = 3; 3 * 2 = 
1; 1 / 3 = 2;

<relation> J -> I; I -> F; F->D; D -> 
C; C->G; <equation> 1 * 2 = 2; 2 * 3 
= 1; 1 * 3 = 3; 3 * 2 = 1; 1 / 3 = 2;

J -> I; 1 * 2 = 2; I -> F; 2 * 3 = 1;
F->D; 1 * 3 = 3; D -> C; 3 * 2 = 1;
C->G; 1 / 3 = 2;

<relation> J -> I; I -> F; F->D; D -> 
C; C->G;
OR
<equation> 1 * 2 = 2; 2 * 3 = 1; 1 * 3 
= 3; 3 * 2 = 1; 1 / 3 = 2;

Figure 1: How can we incorporate structured relational reasoning in sequence-to-sequence modeling? Assuming that
the mathematical reasoning process can be partitioned into the abstract relational and the numeric part, we explore
four different possibilities: A) Numeric only: Only numeric steps are provided without any relational tokens; B)
Relational-first: The abstract relational part are stated before the numeric; C) Interleaved: The abstract rela-
tional and numeric are interleaved; D) Multitask: Either output the abstract relational or the numeric but not both.

perform the tasks without language. Mu et al. [2020] expanded on this finding by removing the
input language at test time, thereby reducing the role of language as a auxiliary loss signal, and
argued that language serves primarily to regularize learned representations. Distinguishing between
descriptive and explanatory language signals, Lampinen et al. [2022] found that the latter uniquely
allows models to resolve ambiguity in confounded samples to appropriately assign credit to the causal
features. Hase and Bansal [2021] enumerated several ways to incorporate explanation in machine
learning models, which is relevant in our context of how to incorporate relation abstraction together
with concrete arithmetics.

3 Incorporating Relational Abstraction
In this section, we describe our framework of incorporating relational abstractions into mathematical
reasoning. Problem solving can be thought of taking a series of intermediate steps to reach the goal,
each of which consists of a numerical expression and an abstract description of the transition between
one abstract item to another.

For example, to estimate the total number of students in a school, we begin with the number of
grade levels at the school, which is then multiplied by the number of classes in each grade to get
the number of classes, and then again multiplied with the number of students in each class to get
the total number of students. This relational plan describes the relational reasoning process without
invoking any numbers. Here, “number of grades”, “number of classes per grade”, “number of classes
”, “number of students per class” and “number of students” are quantities needed to reach the goal,
and the multiplications are the intermediate transition functions. Having formulated the abstracted
plan, we can then work out the numerical computations to find the actual quantities.

What makes a plan, such as the one above, abstract is that it omits some pieces of information,
such as the quantities involved, and connects items through how they relate to each other. In other
words, a relational abstraction formulates the problem as a graph of interconnected items. It may
seem that a carefully designed symbolic system can then easily solve the problem by traversing
through this graph, but the challenge remains that defining semantic nodes and transitional edges in
every problem is difficult. Thus, instead of directly converting plans to graph symbols, we explore the
use of structured natural language as a middle ground between symbolic language and unstructured
natural language.

To this end, we follow a sequence-to-sequence paradigm as it can be easily adapted to a Trans-
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former model. Figure 1 enumerates a few possibilities for how we can incorporate structured re-
lational reasoning into sequence-to-sequence modeling. Assume that we can decompose a solution
sequence into the numeric and relational part. Using numeric-only formulates the solution by incor-
porating only numbers and arithmetic operations, which serves as our baseline. In relational-first,
the relational statements are indicated before numeric ones. This represents the strategy of gener-
ating a high-level relational plan first, and then implementing the plan by computing the relevant
numbers. Alternatively, the interleaved format goes through the relational and numeric steps one af-
ter another, alternating between the abstract planning and arithmetic steps. Lastly, in the multitask
approach, the model is prompted to either output the relational or the numeric components, but
not both, which may allow the model to learn to be implicitly aware of the high level abstraction
while writing down the numeric equations. This approach tests the claim that additional auxil-
iary language tokens effectively function as regularizers or learning tools that can be discarded at
test time and may even suppress performance if included [Mu et al., 2020, Lampinen et al., 2022,
Hendrycks et al., 2021]. Moreover, learning and generating the two sequences separately has the
added advantage of generating shorter sequences at test time, just like numeric-only. In this paper,
we examine which type of relational abstraction brings the best reasoning capability.

An alternative to our approach is to allow the model to output only unstructured natural
language-based solutions by leveraging existing world knowledge learned elsewhere. This is in fact
the approach taken by recent literature of solving mathematics problems [Cobbe et al., 2021, Wang
et al., 2022, Wei et al., 2022], and the intent is to invoke the reasoning capability of a pre-trained
language model by describing the solution using natural language. Compared to unstructured nat-
ural language sequences, our abstract plans encourage the model to extract meaningful concepts
and relations to focus on the associated quantities, rather than producing sentences that broadly
resemble the training corpus. Separating the relational and numeric segments of the solution can
also allow the model to generalize to more problems since many problem instances share the same
abstract structure but are filled with different numeric values.

4 Experiments
In this section, we describe the two tasks that we use to test our hypothesis: a set of natural language
math problems from the GSM8K dataset [Cobbe et al., 2021] and an abstract unit conversion task.
Both tasks share a similar structure in that they contain units and relations that can be represented
by a graph, and involve formulating and solving series of numerical equations. While the core of the
two tasks are similar, solving word problems requires natural language understanding and general
world knowledge (such as the fact that a dozen consists of 12 items, or that the number of eggs
increases when it is laid by a chicken but decreases when it is used in baking cookies) whereas
the unit conversion task is wholly abstract and is fully solvable using symbol manipulation rules.
Together, our two experiments offer both a rich, naturalistic environment with empirical results for
broader applicability and a systematic, synthetic environment that reduces mathematical reasoning
to its most abstract form, bringing out the advantage of relational abstractions more clearly.

4.1 Task 1: Solving Grade School Math Problems
We first evaluate our framework on more realistic problems posed in natural language as provided
by the Grade School Math 8K (GSM-8K) dataset [Cobbe et al., 2021], which contains around 7.7K
training question and 1.3K test questions with human annotated solutions, all in the form of the
English language. An example of the problem and its solution can be found in the first two rows of
Table 1. The original dataset contains the following possible solution formats:

• The original solution format provides solution steps and is what was used for the results reported
in the original paper. It is based entirely on natural language with portions annotated with
executable equations. It shares some similarities with our interleaved approach as it often leaves
the target unit of each step at the end of the sentence (e.g. Janet sells 16-3-4 eggs a day).

• The equation-only format contains the numerical equations without any use of natural language
to reference any objects or units.
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Problem Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She
sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the
farmers’ market?

Natural language

Original solution (1) Janet sells 16 - 3 - 4 = ≪16-3-4=9≫ 9 duck eggs a day.
(2) She makes 9 * 2 = ≪9*2=18≫18 every day at the farmer’s
market.

Numeric only

Equation only (1) ≪16-3-4=9≫
(2) ≪9*2=18≫

Socratic prompts

Socratic + solu-
tion

(1) How many eggs does Janet sell? Janet sells 16 - 3 - 4 = ≪16-3-
4=9≫ 9 duck eggs a day.
(2) How much does Janet make at the farmers’ market? She makes
9 * 2 = ≪9*2=18≫18 every day at the farmer’s market.

Socratic + equa-
tion

(1) How many eggs does Janet sell? ≪16-3-4=9≫

(2) How much does Janet make at the farmers’ market? ≪9*2=18≫
Relational + numeric

Relation + equa-
tion

(1) eggs laid per day - eggs for breakfast - eggs for baking = re-
maining eggs ≪16-3-4=9≫
(2) remaining eggs * price per egg = amount earned daily from eggs
≪9*2=18≫

Table 1: GSM math dataset sample problem and variants of solution sequence format.

• The socratic version contains a series of questions that ask for intermediate answers, which we can
either prepend before each step of the original solution (socratic + solution), or of the equation-
only format (socratic + equation). Although the GSM-8K dataset contains these questions as
additional content, the original and subsequent works did not use them.

In addition to these formats, we introduce the relation + equation format that features relational
abstractions. Not only are the resulting states specified, but also the input arguments and the types
of transition functions which when taken together, may provide a better form of supervision. For
example, “amount earned” is the step output, and “number of eggs multiplied by price per egg”
is the relational statement needed to compute the output. Since the original dataset only contains
language solutions without any additional labels, we asked human participants to annotate the entire
GSM-8K dataset so that each solution step would be paired with an abstract relation. We include
our labeling task instructions in the Appendix B. We have also released our collected annotation
data to the research community1.

Both the socratic and relation formats contain pairs consisting of an auxiliary sequence and a
solution sequence. Following the setup outlined in Section 3, we either place the auxiliary sequence
first or interleave it with the numerical expressions, which we refer to as aux-first and interleaved
respectively in our results. We also include a multitask variant of our relation format which we
describe later.

Implementation. We follow the experimental protocols from Cobbe et al. [2021] and use pre-
trained GPT2-M and GPT2-XL models [Radford et al., 2019] for this task. We first fine-tune the
model on the question & answer sequences for 40 epochs using a learning rate of 1e-5 with the
AdamW optimizer [Loshchilov and Hutter, 2019]. During testing, we also use the calculator pattern
to autocomplete the equations as done in Cobbe et al. [2021]. We scan the answer token “####”
before the final answer and extract the remaining tokens to compare them against the target answer
to report the final accuracy. At test time, we generate output sequences primarily using either

1https://github.com/renmengye/grade-school-math-relational
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Method GPT2-M (345M) GPT2-XL (1.5B)
GPT2-XL (1.5B)
+ Verifier (345M)

Baseline without sequence generation

Answer only 3.56 4.93 -

Solution sequences only

Original Solution 10.69 17.44 23.35
Our Equation Only 15.32 22.97 24.97

Auxiliary and solution sequences: Model generates both

Socratic + Soln. (aux-first) 10.01 13.95 -
Socratic + Soln. (interleaved) 9.93 17.51 -
Socratic + Eqn. (aux-first) 13.27 19.03 23.35

Socratic + Eqn. (interleaved) 15.16 21.00 25.85
Relation + Eqn. (aux-first) 12.59 19.48 25.55

Relation + Eqn. (interleaved) 13.19 22.97 29.49

Auxiliary and solution sequences: Trained to generate either, prompted for numeric at test

Relation + Eqn. (multitask) 15.62 28.05 30.17

Auxiliary and solution sequences: Prompt with auxiliary, model generates solution sequence

Socratic + Soln. (aux-first) 17.46 26.23 -
Socratic + Soln. (interleaved) 17.89 28.89 -
Socratic + Eqn. (aux-first) 20.47 35.56 -

Socratic + Eqn. (interleaved) 27.82 36.92 -
Relation + Eqn. (aux-first) 54.59 64.59 -

Relation + Eqn. (interleaved) 58.53 66.26 -

Table 2: GSM-8K Finetuning Top-1 Test Solve Accuracy (%)

greedy decoding or a verifier model on 20 samples following Cobbe et al. [2021] (see Appendix A.1
for more details). We select the most informative conditions for the verification experiment, due to
the lengthy time generating samples for each question. When conditioning on ground-truth auxiliary
sequences at test time, we do not perform verification as the same output samples are generated
multiple times.

Results. Table 2 shows the main results using GPT2-M and -XL with greedy decoding. The larger
language model achieves better performance across the board, though the margin varies with other
factors. Note that our numbers are obtained using GPT-2, which is about 100× smaller than GPT-3
in terms of parameter count, so lower accuracy is to be expected.

Compared to the answer-only baseline, in which the intermediate steps are omitted, all of the
multi-step approaches offer an improvement. Equation-only outperforms the original solution format
(22.97% vs. 17.44%), which contains both numbers and text, and this advantage generally holds in
other matched comparisons.

When the model is fine-tuned with auxiliary sequences (socratic or relation sequences) paired
with solution sequences (either the original GSM8K solution or our numeric equation sequences),
we see that performance is no better, and is generally worse, when it must generate both types of
sequences than performance with the corresponding solution sequence only. However, interpreting
these results is made difficult by the fact that the sequences the model is fine-tuned with are quite
long, and performance generally degrades as sequence length increases, creating a potential con-
found. We find that accuracy generally decreases with increasing solution steps and answer length,
and the equation only format suffers the most obvious degradation (see Appendix A.2 for details).

Our multitask regime provides a condition that avoids this difficulty. Here, training sequences
contain a prompt for either a relational or a numeric equation sequence, and the model is prompted to
generate the equation sequence at test time. We see that the multitask training leads to substantially
improved performance in generating the correct equations in the larger GPT2-XL model (28.05%
correct compared to the baseline of 22.97%, a 22% relative improvement). This finding shows clearly
that training to reason relationally can improve test-time performance, even though at test-time the
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model is only generating numerical sequences.
Relation + equation (interleaved) achieves better results than equation-only (29.49% vs. 24.79%),

and is almost on par with multitask (29.49% vs. 30.17%) when using 20 samples and the external
verifier. We find that verification is less helpful when the output format is purely numeric, such as
in the multitask and equation only formats.

We also find that when models trained with auxiliary and solution sequences are prompted at
test time with the ground-truth auxiliary sequence for the given problem, model accuracy improves
significantly (see Table 2). Strikingly, prompting with ground-truth relational sequences triples the
accuracy in the equation-only model (66.26% vs. 22.97%). Moreover, our relational sequences are
far better prompts than the GSM8k socratic questions (66.26% vs. 36.92%), suggesting that with
a good abstract relational plan, language models can solve the math questions much more easily.
These results also indicate that the challenge the models face lies primarily in constructing the
correct relational plan.

All else being equal, generating the full relational sequence first as an overall plan is nearly always
slightly worse than interleaving relational and equation sequences, and this general pattern holds
throughout our results in Tables 2 and 6. The fact that this pattern continues when the relational
sequences are provided as prompts suggests that proximity between the corresponding relational
and numerical reasoning components helps the model retrieve the correct numeric information.

4.2 Task 2: Unit Conversion
The unit conversion task takes as input a given quantity and unit, then requires finding the equivalent
quantity in another unit based on a set of conversion rules that are provided in the prompt (see
Table 3). Problems of this type correspond abstractly to a subset of the problem types encountered
in GSM8K. The conversion rules are presented in random order, and can collectively be viewed as
edges of a graph. Although conversions are bidirectional, only one direction is specified directly in
the prompt for each rule so that solving the task is equivalent to finding a path from the source
node to the destination node while performing the corresponding multiplication (forward) or division
(backward) operations when traversing each edge. This task offers a second context, using totally
synthetic problems that eliminate any world knowledge and linguistic uncertainties that the GSM8K
problems present, in which to explore the role of teaching the model to identify the abstract sequence
of unit conversion steps rather than just step through the required sequence of numeric conversions.
In this task setting, we find a very clear advantage from providing and training models to produce
relational, as well as numeric, sequences compared to producing numbers alone.

The task is presented as a sequence completion task using the graph description and the conver-
sion instructions as the task prompt (see example in Table 3 under Task Prompt). Depending on
the experimental condition, we train the model to produce a target sequence which describes the
conversion path traversed and the arithmetic operations involved. Following the general paradigm
illustrated in Figure 1, the relational-plan approach begins by generating the sequence of units to
traverse before producing the sequence of steps containing numeric calculations. As before, the
numeric-only approach contains only the arithmetic in each step, whereas the interleaved approach
includes both the abstract state and the numerical expression in each statement. Additionally, we
consider three sub-types for the interleaved approach: units-then-numbers states the source and
destination units of the traversing edge, followed by the numerical expression; numbers-then-units
states the numerical expression, followed by the source and destination units; integrated states the
source quantity and unit, then the remainder of the numerical expression, followed by the destination
unit. We refer the reader to Table 3 for examples.

Note that in this task, the relational plan is optional, followed by either numeric-only or one of
the three interleaved steps. As in the previous task, we also test each model’s capacity to execute
a provided correct relational plan by including the ground-truth plan as part of the given prompt
for relational plan models. Overall, we have 4 sequence types × 3 plan types (Ground Truth Plan,
Relational Plan, and No Plan) for a total of 12 conditions in comparison. Lastly, as in the previous
task, we also consider the multitask approach which we address later in this section.

Implementation. To maintain consistent difficulty across our analyses, we use graphs with 10
nodes and 12 edges, and problems that could be solved using exactly 5 edge traversals. All arithmetic
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Task Prompt Relational Plan Sequence Types
(Optional)

Numeric Only Interleaved
Units Then Numbers Numbers Then Units Integrated

graph
H → 2 A F → 3 D relations steps steps steps steps
B → 3 A I → 3 F J → I → F → 1 * 2 → 2 J I 1 * 2 → 2 1 * 2 → 2 J I 1 J * 2 → 2 I
E → 3 B J → 2 I D → C → G 2 * 3 → 1 I F 2 * 3 → 1 2 * 3 → 1 I F 2 I * 3 → 1 F
B → 3 C F → 4 E 1 * 3 → 3 F D 1 * 3 → 3 1 * 3 → 3 F D 1 F * 3 → 3 D
G → 3 C I → 4 H 3 * 2 → 1 D C 3 * 2 → 1 3 * 2 → 1 C D 3 D * 2 → 1 C
D → 2 C G → 1 B 1 / 3 → 2 C G 1 / 3 → 2 1 / 3 → 2 C G 1 C / 3 → 2 G
convert 1 J to G <S> 2 G </S> <S> 2 G </S> <S> 2 G </S> <S> 2 G </S>

Table 3: Example of a unit conversion task problem represented in different formats.

operations in this task are performed in modulo-5 to avoid the arbitrary fractions and large numbers
that would result from compounding multiplication and division operations involved in multi-step
problems. This allows us to focus on the reasoning component of the task rather than the numerical
accuracy of performing long arithmetic operations.

Method Accuracy

Numeric Only

Numeric Sequences 25.9 (1.1)

Relational and Numeric

Relational plan then numeric 69.0 (2.0)
Interleaved: units then numbers 83.5 (1.5)
Interleaved: numbers then units 69.3 (2.9)
Interleaved: integrated 54.1 (3.0)
Plan + Interleaved: units then numbers 72.5 (2.2)
Plan + Interleaved: numbers then units 74.4 (1.7)
Plan + Interleaved: integrated 77.1 (1.9)

Relational (Prompted) and Numeric

Relational plan then numeric 84.7 (4.8)
Plan + Interleaved: units then numbers 96.7 (1.2)
Plan + Interleaved: numbers then units 95.5 (2.2)
Plan + Interleaved: integrated 97.6 (1.1)

Table 4: Unit conversion accuracy over 20 runs. Standard
errors in parentheses.

We use the same model architecture for
all experiments in this task: a 4-layer Trans-
former Encoder with 4 heads and 512x512
feedforward layers, and a linear token de-
coder. All intermediary hidden layers are of
size 256. We train all models using teacher-
forcing on datasets of 10,000 randomly gener-
ated problems with 20,000 gradient updates
on batches of 256 samples. We measure cor-
rectness by extracting the tokens between
<S> and </S>, which in fully trained mod-
els always consists of 1, 2, 3, or 4 followed by
the goal unit, resulting in a 25% chance to
correctly guess the answer, even with incor-
rect intermediary steps.

Results. All models successfully learned to
generate sequences with the corresponding
template, but the accuracy of the generated
sequences varied from chance to nearly per-
fect across the conditions we considered. Our
findings, summarized in Table 4, demonstrate
foremost the importance of having the rela-
tional components as part of the target sequence, indicated by the at-chance accuracy of the numeric-
only model when trained without planning, and the much higher success rate of all variants including
abstract variables (variables corresponding to units).

Of the variants in which the model generates both relational and numeric content at test time,
the units-then-numbers model has the highest accuracy. Producing the relational plan first and
numeric-only sequences performs slightly weaker, comparable to our findings in Task 1. The fact
that units-then-numbers is the best of the three interleaved formats when the model does not first
generate a relational plan supports the view that identifying all of the relevant units that need to
go in a numeric computation prior to performing that computation can be very helpful.

Although training the model to produce both a relational plan and relational steps interleaved
with numbers is helpful in numbers-then-units and integrated conditions, the reverse is true in the
units-then-numbers condition, where asking the model to produce an initial relational plan actually
reduces accuracy from 83% to 72%. This pattern of results suggests that generating the correct
initial relational plan can itself be a challenge, and that an incorrect initial plan then interferes with
performing the correct computations.

Consistent with this interpretation, we find that all models trained to produce a relational plan
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# Graph # Graph # Solution Interleaved Numeric Multitask Multitask
Nodes Edges Steps (UTN) Only Plan Numeric

5 5 2 100.0 94.2 100.0 100.0
6 6 2 100.0 50.0 98.4 89.6
7 8 3 99.0 27.8 85.8 50.2
10 12 5 83.5 25.9 71.6 29.8

Table 5: Unit conversion results by difficulty. Multitask Plan indicates the percent of relational plans correctly
traversed from the start to goal units by the multitask model. Multitask Numeric indicates final answer accuracy
in the numeric only outputs by the multitask model. UTN: units-then-numbers

do significantly better when given the ground truth plan as part of the prompt, reaching over 95%
accuracy in all but the numeric-only models. This suggests that the errors in the planning models
are introduced during the abstract planning stage and hurt subsequent performance. In other words,
the primary challenge of this task is not performing the correct arithmetic operations, but knowing
which steps to take next.

Why is numeric-only so poor? We note that the at-chance performance of the numeric-only
format without the relational plan is in contrast to our results in Task 1, as well as some other
previous works that solved word problems by mapping them to arithmetic expressions first [Wang
et al., 2017, Amini et al., 2019]. We considered whether this was due to the modulo-5 number range
used in our experiments, as this would force multiple conversions to use the same numbers. To test
this, we trained the numeric-only model on modulo-23 and modulo-53 problems, and also trained the
units-then-numbers (interleaved) model on the same problems for comparison. Raising the mudulus
increases difficulty, reducing the accuracy of the unit-then-numbers (no plan) model to 71.0% and
31.6% respectively, but numeric-only accuracy drops further to 4.5% and 1.9%, i.e. the expected
accuracies for randomly guessing, indicating that the problem persists with larger numeric ranges.

We also consider the possibility that the model may struggle to learn the unit conversion task
with numbers-only due to the higher complexity of the task, compared to the GSM8K. Consider
the GSM8K problem shown in Table A.1, which requires only a 2-step solution using just 6 unique
quantity-unit pairs, and where the quantities invoked in the solution steps appear in the same order
as presented in the prompt. In contrast, the graphs used in our analyses contain 10 nodes with 12
edges, and the relations are always presented in random order with no correspondence to how they
appear in the solution. These features could make the unit conversion task more difficult, requiring
more relational planning.

We test this hypothesis by training the numeric-only and unit-then-numbers (interleaved, no
plan) models on three easier datasets that contain problems involving smaller graphs with 5, 6 7
nodes and only 2 to 3 solution steps. We find that while the interleaved unit-then-numbers (UTN
in Table 5) models reach near perfect accuracy in all three datasets, the numeric-only models only
solve 94.2% of the 5-node, 50% of 6-node, and 28% of 7-node problems (see Table 5). This suggests
that while the numeric-only format may work well for simpler problems, it does not scale as well
with planning complexity.

Multitask in unit conversion. In Task 1 we find some empirical benefit of the multitask ap-
proach, where the model is trained to output either the relational plan or the numerical expressions,
then evaluated on the numerical expressions at test time. To answer whether multitasking can be a
universal approach, we train 5 models to either produce the relational plan sequence or the numeric-
only sequence by prompting it with an ’abstract’ or ’steps’ at the end of the prompt, similar to Task
1. Here, we find that only 29.8% of the problems are correctly solved at test time, significantly lower
than any of the other relational reasoning models (see Table 5). Interestingly, the models produce
correct relational plans that connect the start and goal units on 71.6% of the problems, suggesting
that the low accuracy in the numeric sequence is not from failing to traverse the graph, but rather
from the inability to integrate relational and arithmetic reasoning together.

To examine how multitask performance scales with task complexity, we train the multitask models
on easier problems as described in the previous section. On a 5-node graph with 2-step solution
problems, the multitask models successfully solve every held-out problem, but this accuracy drops to
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50.2% on a 7-node graph with 3-step solution problems. In sum, while the multitask approach with
numerical expressions and relational abstractions separately may be effective on simpler problems,
this strategy also does not scale well with planning complexity. When the problem is more difficult,
it helps to engage in relational abstractions while producing a solution.

5 Discussion

We find that relational reasoning is a key component of mathematical reasoning, whether using
natural language or abstract symbols as indicated by our experiments on the GSM8K and the unit
conversion tasks. Training the models with relational abstraction can outperform models trained
using numerical expressions only, and making these abstractions more salient improves performance
further still. While the models can solve some problems without relational abstractions at test time,
and can benefit from learning to generate the relational plan separately as in the multitask setup,
performing both relational and numerical reasoning together scales far better with model complexity.

We also find that even when all the relational and numerical components are present, how they are
ordered makes a significant difference. Among the variants we considered, performing the relational
reasoning step just before the numerical computation step is most advantageous, outperforming cases
where the full relational plan must be generated at the outset. Lastly, we find that providing the
model with the correct abstract steps produces a massive boost in performance, resulting in a 3-fold
increase in accuracy for the GSM8K task and near-ceiling accuracy in unit conversion, suggesting
that the core of the challenge is indeed correct relational planning.

Some of our other findings will require further work to understand more fully. For example, in
GSM8K, equation-only is just as effective as relation + equation when using greedy decoding, and
the multitask model far outperforms both, contradicting our findings in the unit conversion task.
Although the unit conversion experiments on problems with varying difficulties offer some insight
as to why the results differ, it is difficult to be conclusive about why these disagreements occur,
especially given the complexities of natural language and the still limited understanding of large
language models. For example, language models often struggle with longer sequence lengths, and
we cannot claim to know how much of the equation-only model’s advantage may be due to shorter
solution lengths. This invites further investigation into understanding how large language models
learn and represent relational abstractions.

We also recognize the practical constraints of training a model with detailed annotations. Gen-
erating the correct labels is difficult to automate and human annotations can be extremely costly.
Moreover, determining the right level of abstraction and defining the correct relations can be more
art than science, more so when considering more complex domains than math word problems de-
signed for children, which presents an exciting challenge for future research. Indeed, our analyses
here are limited to mathematical reasoning (just one form at that), and it is an open question how
they will apply to problem solving more broadly.

Ultimately, the road towards building models of general and flexible intelligence requires moving
away from curating additional human-labeled data. Our goal is not to find yet another way to
engineer supervised learning signals with new types of datasets, but to understand what forms of
experiences are most conducive for learning to reason. There is yet much to be understood about
reasoning and abstraction in neural networks: e.g. 1) what is the scaling relationship between re-
lational abstraction and the ever growing size of large language models and 2) how would a model
generate its own abstractions and in domains beyond mathematical reasoning? As a small step to-
wards that end, we hope that this work begins to offer insight into the role of relational abstraction
in computational intelligence.
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Method Greedy Simple Plurality Verifier Rerank Verifier Weighted Plurality

Original Solution 17.44 21.53 19.86 23.35
Our Equation Only 22.97 23.58 23.96 24.79

Socratic + Eqn. (aux-first) 19.03 21.46 22.29 23.35
Socratic + Eqn. (interleaved) 21.00 22.21 25.85 25.47
Relation + Eqn. (aux-first) 19.48 22.97 22.75 25.55

Relation + Eqn. (interleaved) 22.97 26.31 25.63 29.49
Relation + Eqn. (multitask) 28.05 29.42 28.28 30.17

Table 6: GSM-8K Top-1 Test Accuracy (%) Using 20 Samples. Bold = Best Answer Format; Underline = Best
Voting Mechanism. We take results from the best voting mechanism for each method in the main paper.

A Additional results

A.1 GSM-8K results using samples

In Table 6, we study more sample-based mechanisms for generating solutions. We generate 20
samples using softmax sampling (temperature = 0.9), and to aggregate the answers, we considered
plurality voting [Wang et al., 2022] and the following verification-based techniques:

• Verification. As originally proposed in Cobbe et al. [2021], we train a separate verifier model
using samples generated by our main model. The verifier takes as input the concatenated sequence
of question and answer, then outputs a sequence of scores predicting whether the answer is correct
or not. We generate the training samples using the main model after two epochs of fine-tuning,
then fine-tune the GPT2-M model as our verifier.

• Verifier weighted plurality. We find that as the number of samples grows, a simple reranking
mechanism performs worse as it has more incorrect options to choose from as the top choice.
Cobbe et al. [2021] proposes using the voting mechanism to select the top-K ranked samples as
seeds and voting among these candidates. However, this requires a larger number of samples for
the voting process, and moreover, K becomes yet another hyperparameter to tune. Here, we
explore a simpler approach of using the verifier score to weigh the votes. We find that it smooths
out predictions and achieves higher accuracy.

All models seem to improve with using 20 samples, and our verifier weighted plurality is the best
approach, achieve the best overall accuracy on all but one condition. Figure 2 and 3 show accuracy
as a function of number of samples, and the verifier weighted plurality achieves higher scores with
more samples.

Table 6 also indicates that performance of verification-based approaches benefits more from
additional auxiliary information (whether in the form of natural language or abstract relations).
For instance, our proposed relation + equation (interleaved) format has a similar performance to
equation only using greedy decoding, but achieves significantly better performance with a verification
voting procedure, while equation only receives a smaller boost (interleaved improved by +6.52% vs.
equation only +1.82%). The original solution also receives a boost of +5.91%, except that the
absolute accuracy is 6.14% lower than relation + equation (interleaved), a rather wide gap. This
dependence on a verification plus voting procedure suggests that relational abstraction is a more
computationally demanding task that requires repeated processing of information.

A.2 GSM-8K results on different solution length

In Figure 2 and Figure 3 we show the accuracy as a function of number of samples in both reranking
and weighted plurality voting schemes. Reranking sometimes suffers from lower accuracy with more
number of samples, whereas weighted voting has an overall positive trend as the number of samples
go up.

We compare the performance of problems with different numbers of solution steps (Figure 4)
and different generated sequence lengths (Figure 5). The overall trend confirms that models per-
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Figure 2: Verifier reranking accuracy
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Figure 3: Verifier weighted plurality accuracy
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Figure 4: Accuracy vs. number of reasoning steps in
the groundtruth answer.
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Figure 5: Accuracy vs. percentile of solution length
(percentiled separately by condition).

form worse with longer answers. Figure 5 suggests that Equation Only tends to suffer from more
degradation as the relative solution length increases.
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B Human annotator instructions

We include our instruction for human annotators for collecting the abstract relational plan data for
GSM-8K dataset. The following pages contain an instruction as well as an example to be annotated
with empty fillable boxes. This shows the user interface that the human annotators used when the
labeling task was performed.
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1. Projects

2. Generating equation explanations for math problem solutions (try #3 Q61-8792)

3. Preview

Generating equation explanations for math problem

solutions (try #3 Q61-8792)

Instruction
You will be assigned with some grade school math questions. The full solution is provided below each 
question. For most steps in the solution, there is a math equation being highlighted. Please add a line 
of explanatory text for each equation. The explanation should follow the same format as the original 
equation, while describing the items with short phrases that connect the equation with the relevant 
quantities mentioned in the problem and with quantities computed in other problems. Try to construct 
phrases that characterize the quantities succinctly while avoiding ambiguity and use the same phrase 
to refer to the same quantity a second time.

Here are some example questions. The purple text below illustrates the kinds of phrases that we ask 
you to fill in:

Example #1
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes 
muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 
per fresh duck egg. How much in dollars does she make every day at the farmers' market?

Solution: Janet sells 16 - 3 - 4 = <<16-3-4=9>>9 duck eggs a day.
She makes 9 * 2 = $<<9*2=18>>18 every day at the farmer’s market.

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...
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Final answer: 18.

Line 1: 16-3-4=9 Explanation: Eggs laid - eggs eaten - eggs baked = eggs sold
Line 2: 9*2=18 Explanation: Eggs sold * price per egg = amount earned

Note that we have preferred the use of very general names for variables such as “price” rather than 
“dollars” to encourage the recognition of common structures of variables.  We also used the exact 
phase ‘eggs sold’ both for the result of line one and for the same quantity when it occurred on the left 
hand side in line 2.

Please try to explain all quantities in the equations, including the item after the “=” sign.

Please also have white space before and after mathematical symbols like “+”, “-”, “*”, “/”,  “=”, etc.

Example #2
Question: Jen is planning to sell her root crops. She has 6 yams which can be sold at $1.5 each, 10 
sweet potatoes that cost $2 each, and 4 carrots which cost $1.25 each. If she sells everything, how 
much will she earn?

Solution: Jen can earn $1.5 x 6 = $<<1.5*6=9>>9 for the yams.
She can earn $2 x 10 = $<<2*10=20>>20 for the sweet potatoes.
And she can earn $1.25 x 4 = $<<1.25*4=5>>5 for the carrots.
Therefore, she will earn $9 + $20 + $5 = $<<9+20+5=34>>34 if she sells everything.
Final answer: 34.

Line 1: 1.5*6=9 Explanation: Price per yam * number of yams sold = amount earned on 
yams
Line 2: 2*10=20 Explanation: Price per sweet potato * number of sweet potatoes sold = 
amount earned on sweet potatoes
Line 3: 1.25*4=5 Explanation: Price per carrot * number of carrots sold = amount earned on 
carrots
Line 4: 9+20+5=34 Explanation: Amount earned on yams + amount earned on sweet 
potatoes + amount earned on carrots = total amount earned

Note that we don’t repetitively mention the person’s name (Jen) since it does not help resolve any 
ambiguity by mentioning her name.

Example #3

Preview - Generating equation explanations for math problem solutions (... https://app.surgehq.ai/tasks/c0aba69c-d2de-47c8-b3e2-166e79c3ab06?t...
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Question: John had a son James when he was 19.  James is now twice as old as his sister Dora, who 
will turn 12 in 3 years.  How old will John's youngest son, who was born when John was 32, be in 3 
years?

Solution: Dora is 12-3=<<12-3=9>>9.
So James is 9*2=<<9*2=18>>18 years old
That means John is 18+19=<<18+19=37>>37
Johns youngest son is 37-32=<<37-32=5>>5 years old
So he will be 5+3=<<5+3=8>>8 in 3 years
Final answer: 8.

Line 1: 12-3=9 Explanation 1: Dora’s age in three years - three years = Dora’s age now
Line 2: 9*2=18 Explanation 2: Dora’s age * ratio of James’ age to Dora’s age = James’ age
Line 3: 18+19=37 Explanation 3: James’ age + John’s age when James was born = John’s age
Line 4: 37-32=5 Explanation 4: John’s age - John’s age when his youngest son was born = John’s 
youngest son’s age
Line 5: 5+3=8 Explanation 5: John’s youngest son’s age + three years = John’s youngest son’s 
age in three years

In this example, it is necessary to mention people’s names to avoid ambiguity. Only do this when 

necessary.

Example #4
Question: Every hour Joanne has to collect the coins out of the fountain inside the mall. During the 
first hour, she collected 15 coins. For the next two hours, she collected 35 coins from the fountain. In 
the fourth hour, she collected 50 coins from the fountain but she gave 15 of them to her coworker so 
she could buy a soda. How many coins did she have after the fourth hour?

Solution: 15 coins collected in hour one
35 coins collected in hour two
35 coins collected in hour three
50 coins collected in hour four
Before giving her coworker some coins there were 15+35+35+50=<<15+35+35+50=135>>135 coins
The number of coins after given 15 to her coworker is 135-15=<<135-15=120>>120
Final answer: 120.

Line 1: 15 coins collected in hour one Explanation: Coins collected in hour one
Line 2: 35 coins collected in hour two Explanation: Coins collected in hour two
Line 3: 35 coins collected in hour three Explanation: Coins collected in hour three
Line 4: 50 coins collected in hour four Explanation: Coins collected in hour four
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Line 5: 15+35+35+50=135 Explanation: Coins collected in hour one + coins collected in 
hour two + coins collected in hour three + coins collected in hour four = total coins collected.
Line 6: 135-15=120 Explanation: Total coins collected - coins given to the 
coworker = coins remaining

Note that not all lines will contain an equation, and in this case try to explain each solution line with 
plain words.

In some cases, as with the first four lines here, the explanation may repeat the content of the Line, but 
we ask you to provide such explanations, as in the example.

Equations with unknown variables
For each problem, before you can enter explanations, there will be a required question asking 
whether any of the lines of the solution contain unknown variables. In the example below, "C" is the 
unknown variable. If there are unknown variables, then please answer "yes" for the first question, and 
follow the example below to provide an explanation for each line.

Question: Farmer Brown has 20 animals on his farm, all either chickens or cows. They have a total of 
70 legs, all together. How many of the animals are chickens?

Solution: Let C be the number of chickens.
There are 20-C cows.
The cows have 4*(20-C) legs.
The chickens have 2C legs.
The total number of legs is 2C+4(20-C)=70.
2C+80-4C=70
2C=10
C=<<5=5>>5.
Final answer: 5.

In this case, you will be asked to provide explanations for each line of the solution which will be 
displayed.  These lines will not simply be an equation as in other cases.  As before, the purple text 
shows the kind of explanation we are asking you to provide.

Line 1: Let C be the number of chickens. Explanation 1: Define a variable for the number of 
chickens
Line 2: There are 20-C cows. Explanation 2: Number of animals - number of chickens = 
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number of cows
Line 3: The cows have 4*(20-C) legs. Explanation 3: Number of legs each cow * number 
of cows = number of cow legs
Line 4: The chickens have 2C legs. Explanation 4: Number of chicken * legs per chicken 
= number of chicken legs
Line 5: The total number of legs is 2C+4(20-C)=70. Explanation 5: Number of chicken legs + 
number of cow legs = total number of legs
Line 6: 2C+80-4C=70. Explanation 6: Simplify toward finding the number of chickens
Line 7: 2C=10. Explanation 7: Combine like terms toward finding the number 
of chickens
Line 8: 5=5 Explanation 8: Divide by 2 to determine the number of 
chickens

Note that we have asked you to restate the quantity referenced by the variable and also to use the 
quantity, not the variable itself in your explanations.

Collapse Instructions

Question: Cynthia has four times as many water balloons as her husband, Randy. Randy has only half

as many water balloons as his daughter, Janice. If Janice throws all 6 of her water balloons at her

father, how many water balloons does Cynthia have, which she could also choose to throw at Randy?

Solution: Randy has only half as many water balloons as Janice’s 6, for a total of (½)*6=3 water

balloons.

Cynthia has 4 times as many water balloons as Randy, for a total of 4*3=<<4*3=12>>12 water

balloons

Final answer: 12

Does the solution seem correct?

Yes

No

Does the solution contain equations of unknown variables? (See instruction for an example of

equations of unknown variables)

Yes

No

(If the line is empty, please skip the response)
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Line 1: Randy has only half as many water balloons as Janice’s 6, for a total of (½)*6=3 water

balloons.

Explanation 1:

(If the line is empty, please skip the response)

Line 2: 4*3=12

Explanation 2:

(If the line is empty, please skip the response)

Line 3:

Explanation 3:

(If the line is empty, please skip the response)

Line 4:

Explanation 4:

(If the line is empty, please skip the response)

Line 5:

Explanation 5:

(If the line is empty, please skip the response)

Line 6:

Explanation 6:

(If the line is empty, please skip the response)
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Line 7:

Explanation 7:

(If the line is empty, please skip the response)

Line 8:

Explanation 8:

(If the line is empty, please skip the response)

Line 9:

Explanation 9:

(If the line is empty, please skip the response)

Line 10:

Explanation 10:

(If the line is empty, please skip the response)

Line 11:

Explanation 11:

(If the line is empty, please skip the response)

Line 12:

Explanation 12:

Additional comments
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